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Abstract
~
This report is the second part of a study of Rayleigh-Bloch (R-B)

wave expansions for plane diffraction gratings. The principal concepts
and results of the study, including the definition and construction of
the R-B waves, the formulation of the corresponding R-B wave expansion
theorem and the main ideas for the proofs were given in part I. The

present part II contains complete proofs of the results whose proofs

were omitted or only sketched in part I.
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Introduction.

This report is a companion to "Rayleigh~Bloch Wave Expansions
for Diffraction Gratings I." In that report the concept of a Rayleigh-
Bloch, or R-B, wave for a diffraction grating was introduced and the
main concepts and results of a theory of R-B wave expansions were
developed. Proofs that were omitted or only sketched in part I are
presented in full here. From a technical view-point the central concepts
of the theory of R-B wave expansions, as developed in part I, are the
holomorphic family (A : g€ MP} and the corresponding analytic

PslHr

continuatior of the resolvent of the reduced grating propagator Ap. The

proofs of the basic properties of Ap , described in §4 of part I, are

26, T
surprisingly intricate and make up the main part of this part II. They
are leveloped in §8. The theorems concerning the R-B wave expansions
for the reduced propagator Ap’ formulated in §5 of part I, are proved in
§9. Finall,, the R-B wave expansions for the full grating propagator A,
presented in 56 of part I, are proved in §10. References cited with

square brackets in this report refer to the list of references at the

end of parc I.
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§8. Proofs of the Results of §4.

The properties of the class Ep,z,r described by Lemma 4.1 are
essential for the construction of the Riemann surface Mp and family
{Ap,;,r A Mp}. The proof of the lemma outlined in §4 is therefore
completed here.

Proof of Lemma 4.1. Assume that u GFD(Agoc) and define v(x,y)

= exp {-ipx} u(x,y). Then v € L;’2°C(A,Q) and satisfies the p-periodic
boundary conditions (3.7) with p = 0, Thus if QY 1s the cylinder

obtained by identifying the points (-m,y) and (W,y), y € v, it follows

that v is a distribution solution of Av + 2ip va + (z-pz)v
= e 1P%¢ ¢ Lfoc(QY). Let h' satisfy 0 < h' < h, R}, C G. Such numbers

h' exist if §§'C G. Then QE. = Q' N {(x,y) | y> n'} is contained in

the interior of ' and the interior elliptic estimates of [1] imply that

v E Li’loc(ﬂz.). This result implies (4.6) and (4.8) of Lemma 4.1.
Moreover, f = 0 in Qr and the regularity theory of [1] implies

v € L?’zoc(ﬂz) for all m € Z which implies (4.9) and (4.10).

It remains to prove (4.7). Note that if v is defined as above

then

T —m————— v
8.1) uw iy = %% I-n ot (pHm)x u(x,y)dx = %; J_ﬂ R v(x,y)dx = v _(y).

Hence (4.7) is equivalent to the statement that

imx

(8.2) v(x,y) = ] v (y) e
€z

in ﬂz
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where the series converges to v in L?.‘“(ﬂ}). To prove this note that

{e:l'“lx | m € 2} is an orthogonal sequence in Li(ﬂl k') for any k, k' such
?

that h < k < k' < ®, Next define

(8.3) | Py v(x,y) = ! v, () eI

m|<L

where Vo is defined by (8.1). Then direct calculation shows that

(8.4) Py : Lg(ﬂl’k.) + Lg(Q{’k') is bounded
and

i.e., PR, is an orthogonal projection. It follows that

(8.6) Qz =1 - Pl

is also an orthogonal projection in L% (QI k,). Note that the convergence
*

2
of (8.2) in LZ’R'OC(QI k,) is equivalent to the condition
’
- 2/aY
(8.7) t_’ig 1Q, v, 0 for all v & Lz(ﬂk,k')

where I°l, is the norm in L2 (Qz k')' Now (8.7) follows from classical
»

convergence theory for Fourier series if v € CQ(Q.I k')’ the set of

restrictions to f{ k' of functions from CG(QE). Moreover, this set is
*

dense in Lg(ﬂ'{ k')’ Thus if v e L%(Ql k.) and v' € CQ(Q.I k,) then
] ? »

1Qy v = (Q, v,v), = (Q,(v=v"),v), + Q v',v),
(8.8)

Shv=v'l, Ivl, +1Q, v'l, IV,
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It follows that

(8.9) lim sup 1Q, viZ < 1v-v'l, 1Vl

g+ 2

———

for all v' € CQ(QI () which implies (8.7).
;]

Proof of Theorem 4.2. To prove the continuity of the mappings

(p,2) > w ,,(8) for all (p,5) € M and m € Z let (py,g,) €M, m € Z and

€ > 0. It will be shown that there exist p,(¢) > 0 and § () > 0 such *
that
(8.10) pr+m(c) - wp°+m(co)| < € for (p,Z) € N(py,%,,0,96)

provided 0 < p < po(e), 0 < § < §,(e).
To prove (8.10) note that in Cases 1 and 2 of the definition of

N(pg»5gsP,8) one has, for every m € Z,

(8.11) w (@) = +(m (0) - ()2, W  (g,) = 2, (Lo) - (pytm)2) /2

Py

where the square roots have non-negative imaginary part and the ¢ signé

are the same for each m € Z. Moreover,

(8.12) (2, W, (Zg) = 2o € D(z,,p) and |p - pof < &

for (p,Z) € N(pys50,P»8). Hence there exist p,(e) > 0, §,(c) > 0 such

that

[w

) Yp 4 (Go) |
(8.13)

= 1@ - ) VE - (r, (€)= () ) 2] < e

for (p,Z) € N(pys%,,04(€),8,(e)). To prove (8.10) in Case 3 note that

in this case if (p,3) € N(p,,Z,,0,6) then one has both z, = (p, + m,)?
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and (p + mo)2 in D(z4,p) for & < 85(p). Moreover wp +a (Co) = (O, Hence
078y

there exists a p,(e) > 0 such that

- - Y,
(8.14) 'wp+m°(C) - "b°+mo(c°)| [ (mo (@) = (P + m)?)'2] <€

for (p,8) € N(py,%g,Ps8), 0 < p < pole), 0 <8 < §g(py(€)) because

ﬂp(C) € D(zy,p) for all such (p,Z). The proof that the functions

wp+m(C) with m ¥ m; are continuous at (py,,) is the same as in Case 1.
To prove the equicontinuity statement of Theorem 4.2 fix

(Pg»%o) € M. Then for allm € 2 (resp., m€ Z = {mo}) Cases 1 or 2

apply to

wb+m(;) ané if.

(8.15) Fa(z,p) = (z = (0 + *)*, In F (2,p) 2 0

then for all (p,g) € N(po,;o,p,é) one has

(8.16) ¥4 () - wp°+m(co)l = [Fy(m,(@),p) - Fm(npo(co),po)l-

Note that Fm(z,p) has partial derivatives

D, F (2,p) = = (z - (p + m)2)”V/2

z ‘m s P ) P ’
(8.17)

Dp Fo(z,p) = -(z - (p + m)2)" V2 (p + m).

Hence for z € D(z,,p) and Ip - p°| < 8 these derivatives are uniformly

bounded for all m € Z (resp., m € Z - {my}). Now by Taylor's theorem

(8.18) F_ (z,p) = F (2z9,Pg) + (2~ 25) D, F (z',p") + (p-py) Dp Fm(z',p')

/

where (z',p') 1s on the segment from (z,,p,) to (z,p). Thus one has

o Y pacecuie § [ VS )

b
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ot (8 = ¥y (G0

(8.19)

<o, By(z'sp"] I (@) - vpo(co)l + |y Fp(z'spD] [p~p,]

A

Const. (pr(c) - @l + |p - po)
Q

for all (p,Z) € N(p,,%ysP»8) and all m € Z (resp., m € Z - {my}). Since
wp(c) and ﬂpo(go) = z, are in D(z,,p) for (p,Z) € N(p,,5,,P,8) it is
clear that there exist p (e) > 0, §g(e) > O such that (8.14) holds for
all (p,Z) in N(py,%0,Py(€),8,(c)) and all m € Z.

Theorem 4.3 was proved in §4. The proof of Theorem 4.4 will be
based on the following

Lemma 8.1. For every compact set K € M and every r' > r there

exists a comstant C, = C,(K,r,r') such that for all u € l_J(p r)eK Fb Ir
E) RS ]

one has
2 2 2
(8.20) '“Ir,r' < Cl(lunh,r + lvulh,r)’
Proof of Lemma 8.1. Note that every u € Fp Cr can be written
9
(8.21) u(X) = u'X) +u"X), X € Qr,
]
where |
- L
(8.22) u'(X) = I e, exp {1{ x(p+m) + iywp_Hn(C)},
' - ”
(8.23) uw"(X) = 2" ¢, exp {1 x(p +m) + iyw (@},

the ¢, are the coefficients of (4.28) and the notation L', I" denotes

summation over the index sets {m | Im wp+m(c) >0} and {m | Im "p+m(;)5 0},




e

respectively. Lemma 4.1 implies that u € Cw(ﬁ;) and the Fourier series

[yrem—ry

in (8.22) and its derivatives converge uniformly on compact subsets of

ﬁ; to u' and its derivatives. Moreover, the sum in (8.23) is finite for

each (p,5) € M. Finally

2 1y 2 g 2
.24 = +
(8 2 ) ful , ] fu'l R ] iu”l R ]

because {ei(p+m)x} is an orthogonal sequence in L,(Q_ _,) and the index
]

sets defining L' and I" are complementary.

Parseval's relation for Fourier series implies that

T
(8.25) [-ﬂ lut(x,y)|% dx = 27 L' Icml2 exp {-2y Im wp+m(;)}

for all y > r. Moreover, this is a monotone decreasing function of y,

whence

”
J-“ lu'(x,y)|? dx < 2m T |ch2 exp {-2r Im wp+m(;)}
(8.26)

- ' 2
ar 2t fu (0)]2.
Integrating this inequality over r < y < r' gives
2
(8.27) o'ty o coam(c’ - ) 2 lug (0) 2.

The analogue of (8.25) for u" is a monotone increasing function of y > r.

In particular, for r < y < r' one has

Fune
POy

T
" 2 " 2 [
(8.28) J_" Ju"(x,y)|? dx < 2m " [c_|? exp {-2¢' Im Vorn O} -

e |




To estimate this sum note that the sets {m l Im wp+m(c) < 0} vary with

(p»%) € M and the properties of M established in §4 imply that the set

(8.29) M = M(K) = LJ o | Im Vot (3 S 0}
(p,2)EK

is finite for each compact K C M. It follows from this and Theorem 4.2

that
(8.30) U = U(K) = Max {-Im wp+m(§) : (p,Z) € K and m € M(K)}
is finite. Hence (8.28) implies

T
J-ﬂ lu"(x,y)|? dx < 27 exp {2(x'-r)u} Z" Icml2 exp 1-2r Im wp+m(C)}
(8.31)

2w exp {2(r'- r)n} " |um(r)[2
for r <y <r'. Integrating (8.31) over r < y < r' gives
(8.32) fu"i2 , < 2m (r'-1) exp {2(r' - r)u} =" fu (£)|?

r,r'

Adding (8.27) and (8.32) and using (8.24) gives

(8.33) full 2

fe' S 2n(r'-t) exp {2(r' - r)u} mgz !um(r)[2

Finally, Parseval's relation in L, (-m,7) gives

™
(8.34) fuCe,n)i? = J lu(x,r)|? dx = 27 Z Ium(r)lz,
- wsZ

whence
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(8.35) luﬂi’r, < (r'-1r) exp {2(r' - r)u} fu(s,r)d2.

To complete the proof of (8.20) recall that by Lemma 4.1,
u € L;’loc(ﬂh). It follows by Sobolev's imbedding theorem [1, p. 32]

that there exists a constant C; = C,(h,r) such that

lu(s,0)i?

A

2 2
Cz(llullh,r + ﬂDy ulh’r)

(8.36)

A

Co(hut} _ +1%uf )

Combining (8.35) and (8.36) gives (8.20).

Proof of Theorem 4.4. It must be shown that there exists a

constant C = C(K,r,r') such that for all (p,Z) € K and all u € Fp C.r
b ] ’

(8.37) nuug ot uvuug ot nAung "y Cz(lluﬂ; r+|IVu|i;
» > ] b ]

A

+1Mal? ).
r o,r

’

Clearly it will suffice to show that

2 2 2 2 2 2 2
(8.38) ﬂuﬂr’r. + nvh"r,r' + “Au“r,r' <cC (ﬂuﬂo’r+-uvuﬂo r*-lﬁuﬂo,r)

?

since (8.37) then follows with C? + 1 instead of c2. Moreover, every

u € Fb L, satisfies M = -7(Z)u in Qr‘ Hence it will suffice to show
’ ]
that
2 2 < o2 2 2 2 g
(8.39) Huﬂr’r, + "thr,r' <cC (ﬂuﬂo,r + thﬂo,r + uAulo,r) !

since (8.38) then follows with C? Max {lﬂp(C)l +1: (p,0) € K} instead
of C2.

To prove (8.39) note that the Fourier series argument used in

the proof of Lemma 8.1 implies that (cf. (8.35))

» s LR




e e —— ——————————-

(8.40) quI: ot S (x'-r) exp {2(x'-r)u} 19u(-, )12,

Moreover, if r" = %{h + r) then h < r" < r and Sobolev's imbedding

theorem implies that there exists a comnstant C, = C,(h,r) such that

(8.41) 1Vu(e,o)1? < ¢, "“'i;r",r

L] 2
where i nz;r",r is the norm for Lz(Qr“,r)' Finally, the interior
elliptic estimates of [1], applied to v(x,y) = exp {-ipx} u(x,y) and

va = Av + 2ip va - pzv in 9; e imply that there exists a constant
’

C, = C,(h,r,r') such that
2;r",r -

(8.42) Tuf? <cC, (uli o+ IAul;’r,).

Moreover, since Au = -w(Z)u in Qr "

2 2 2 2 2 2 2
bal Lo+ doul] o= Bull o+ dull ok HAu] 4 Inp(C)l Tul?

h,r
(8.43)

Shull +12ub) 4+ Cy(R) Hul?
’ ? ’

where Cg(K) = Max {|1rp(;)|2 : (p,g) € K}. Combining (8.20), (8.40),
(8.41), (8.42) and (8.43) gives

2 2 2 2 2 2
(8.44)  Bull L, +1Vul? < CoQuly +1Vali +18ali )+Cp Hwl

where C; = Max (C,,(r'-r) exp {2(r'-r) u(K)} C; C,) and
C, = (r'-r) exp {2(r'-r)u(K)} C, C, C,. Finally, combining (8.20) and
(8.44) gives (8.39) with C? = Max (C,,C, C,).

It is worth remarking that an indirect (non-constructive) proof
of Theorem 4.4 can be given by a compactness argument; see [34, Lemma

4.6] and Alber [3, Lemma 5.3].

11
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The Sesquilinear Form Ap

?
in LZ(Qo,r)' Kato's first

2Go T

representation theorem [17, p. 322] associates a unique m-sectorial

operator in LZ(Q° r) with each densely defined, closed, sectorial
?

sesquilinear form in Lz(Q° r)' Theorem 4.5 will be proved by construct-
9

ing such a form Ap in Lz(ﬂo r) and showing that A is the
’

3Gt PsG»I

associated m-sectorial operator. To motivate the definition of Ap z,x
4 ?
note that if v € D(Ap z r) then application of Green's theorem gives
’ »

(8.45) (v,A dx.

P&C,rv

)0

T
= Iyvl? - v Dv
»T 0,r -

The formal correctness of this equation is obvious. A rigorous proof
based on the definition of A§°° is given below; see (8.115). Now

v = u where u € F and u and v have Fourier expansions (4.7)

P
P>%,»T PsG»T

for h <y < and h <y < r, respectively. Moreover, Lemma 4.1 and the

Sobolev theorems [1] imply that w € c'[h,»), v, € c![h,r], um(y) = vm(y)

for h £y < r and

(8.46) u (y) = c exp {iywp_m(i;)}, y>r.

Application of Parseval's formula to the integral in (8.45) gives the

alternative representation

47 .
(8 ) (v AP’C:tv

= 2 -
Yo p = 1WWI2 —2m1 ]

v, (g) |v ()|%.
’ ez PO a(®!

The right-hand side of (8.47) will be used to define the form

Ap z,r Two cases, corresponding to the Dirichlet and Neumann boundary
b} »

conditions respectively, must be distinguished. To this end define
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ot
(8.48)
= 1272 (0) Ny | supp (A+m(E)u C 2, .3 (4.28) holds 1n L, oc@y,
Gg’;lr
(8.49)

- L:,p,loc( ) N {ul supp (A+T(@)uCQ i (4.28) holds 1n L, '2°°(n )}

N
The condensed notation Gp,c,r will be used to denote Gg,c,r or Gp,c,r in
statements that hold for both. It is easy to verify that Gp r,r is a
25
,20¢ .
Fréchet subspace of L2 (). The notation Qp,c,r : GP.C,r * L, (Q, r)

will be used for the natural projection defined by

(8.50) Qp,c,ru u Qo,r for all u € G ., T,
The sesquilinear form A (= AD or AN ) and
PsG,r PsC,T P»GCHr

corresponding quadratic form are defined by

(8.51) p,c,r Qp g,r p,c,r < Lz(QO.r)’

(8.52) p,c V) = (T, W) - mgz wp+m(;) v (£) v (1)
for all v,v' € D(Ap c, r)’ and

(8.53) Ap,;,r(v) = Ap’c’t(v,v), v e D(Ap,c,r)’

and one has
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Theorem 8.2. Ap,z;,r is a densely defined, sectorial, closed
sesquilinear form in Lz(go,r)‘

The proof of this result requires a number of estimates which
will be developed in a series of lemmas. The first lemma shows that
(8.52) does indeed define a sesquilinear form on Lz(no,r)'

Lemma 8.3. For all v,v' € D(AP,C,I‘) the series in (8.52)

converges absolutely.

Proof of Lemma 8.3. It follows from Schwarz's inequality that

it will suffice to prove that

2
(8.54) nEZZ VoD vy (D]
converges absolutely when v € D(An z 1,) and
1 [T -i(ptm)
(8.55) v (r) = —J e pHm)x v(x,r) dx.
m 2n m
To this end write v = Qp,c,ru where u € Gp,c,r and decompose u into
(8.56) u(X) = u'X) +u"X), X € Qr’

as in the proof of Lemma 8.1.

Consider first the component u'. Parseval's relation implies

that

v
Lr|u'(x,y)|= dx = 21 L' |oyl? exp (27 Im w (@)

(8.57)

T
Lﬂqu'(x,y)[zdx-zw Z'Icm|2(|p-hn|2+ lwm(c)lz)exp {-2yIm wm(c)}

[P
13

— ey
a~

—y mmend O [

L—
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for all y > r. Moreover, these are monotone decreasing functions of y
that tend to zero exponmentially at », Hence u' € L;(ﬂr).

Next let n,n' € Z satisfy n < n' and define

exp {{ x(ptm) + iyw_, (D)}

p+m

n',
(8.58) u;’n.(X) - E cp

n
where Z denotes summation over the index set {m | Im (Z) > 0 and

v
n E
] 1 ] 1
n<m<n }. Applying Green's theorem to un,n' and un,n' in Qt,r' gives

' 2 - ! !
(8,59) IQ {ul;’n. Aut'l’n' + IVun’n'I } dx Jag un’n. D\) un’n| ds

whence, using the Helmholtz equation and p-periodic boundary condition

for u' ,, one has
n,n

m
(8-60) Ivut'l n'u:_ r| - “(C) Iut'l n'l: l" = j [ul"l n| Dy u' ]!.' dx.
» ’ ’ ’ - ’

Making r' + ® and writing I'Ilr = ll'lr’m gives

L
' 2 _ ' 2 o O '
qun’n.Ir ™(z) Iun,n"r J_," Yn,n' Dy Ya,n’ y=r dx

(8.61)

n',
= -omi g o (D) ug (0|2
where vm(r) - um(r) = ¢, exp {irwph(c)}. In particular, taking the

real part of (8.61) gives

n',
(8.62) 2r ] Im wm(;) [v () |? = qu"l’n,l: - Re m(Z) lul'm.lz.

n
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Hence the convergence of the Fourier series for u' in L;(Qr) implies that

(8.63) z' (%) Ivm(r)l2 < ™,

Im w
pim
The convergence is absolute because all the terms are non-negative.

Now consider the set
.64 - > .
(8.64) 1w @ | mw @ >0}
Each member of the set satisfies

(8.65) larg (-1 w

(I < T2

Moreover, elements of the set (8.64) satisfy

(8.66) Vo3 ~ 1 o, (o] >,
whence
(8.67) arg (-1 w . (2)) + 0 vhen |m| + .

It follows that

(8.68) 8 = Max {|arg (-1 wp+m(C))| : Im wp+m(c) > 0} < w/2.
Hence if Im wp+m(c) > 0 then
(8.69) |Re wp+m(C)I Ivm(t)l2 < tan O Im wp+m(§) Ivm(r)l2

and (8.63) implies that

(8.70) L' |Re w_, (D)] Ivm(t)|2 < o,

p+m

(8.63), (8.70) and the finiteness of the sum defining u" imply the

absolute convergence of the series (8.54).

| Sy SUORY Burpy WP se-rroo.co |

PSS P W SR Y. .. WV svven-at VIR Sirvat W Sl
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Lemma 8.4. For each compact K C M and each r > h there exists an

a = a(K,r) such that for all ve U(p,c)GK D(Ap,c,r) one has
" l
(8.71) lon T Vot (8 lv (0)1%] < 3 IVVI:’r +a lvl:'r.

Proof of Lemma 8.4. Schwarz's lnequality and the definition
2 . 2 1
(8.55) imply that 2m [vm(r)l < Iv( ,r)le(_"’"). Since v € Lz(ﬂo,r) it
follows by Sobolev's imbedding theorem [1] that there exists a comstant
Cy = Co(r) such that for all € > 1 one has

-] 2
(8.72) 2 |v(D]? ¢, ¢ Ay + e? lvlz’r).

Next, note that if M(K) is the index set defined by (8.29) then

M(K) is finite and hence

(8.73) C; = C,(K) = Max {me(;)] : (p,L) €K and m € M(K) }

is finite for every compact K € M. Combining (8.72) and (8.73) gives

l2m 2% w @) lvg(@ ] < 2m ¢y I [vp (0 |®
(8.74)

1A

2m c‘mé[ lv () |

A

-1 2 2 2
Cy C, Me ('VV|o,r + e |vl° r)

IA

1 2 2
2 IVvlo’r + a lv'o,r

provided that € = €(K,r) 2 1 is chosen such that C, C M e <1/2 and
a = a(K,r) satisfies a > C, C;, M €.

Corollary 8.5. The sesquilinear form Ap C,x is sectorial for
259

all (p,g) € M. 1In fact, for each compact K C M there exist constants
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Y = y(K) € R and 6 = 8(K) < 7/2 such that for all (p,;) € K and all

v e D(Ap,;,r) with Ivlo’r = 1 one has

(8.75) Ay eMElzecC: larg (z - v)| < 8}.

Proof of Corollary 8.5. The proof generalizes one of Alber

{3, Lenma 6.3}. Let (p,3) €K, v € D(AP,C-I)’ IV'o,: = 1 and write

Ab’;,r(v) = I, + I, where

(8.76) I, = lel:’r - I (R) lvg(e) ]2,
and

(8.77) Ip = -2m1 2w () lvg () 2.

Then by Lemma 8.4 one has

1 2
(8.78) |m 1, <3 1w +a
Similarly, the real part of I; satisfies

2 1 2 - 1 2
(8.79) Re I > IVvlo’t -3 lelo,t -a=3 IVvlo’ a

Combining (8.78) and (8.79) gives |Im I,| < Re I, + 2a whence
(8.80) I, € {z€C: |arg (z + 2a)| < n/4.

Next, recall that |arg Izl € 8 < /2 where 6 = 8(p,;) 1s defined by
(8.68). In fact, it is elementary to show that the limit relations
(8.66), (8.67) hold uniformly for (p,%) € K and hence there exists a
8, = 8;(K) < m/2 such that |arg I,| < 8, for all (p,f) € K. Combining

this estimate with (8.80) gives (8.75) with Yy = -2a and 6 = Max (n/4,0;).




The proof that the form Ap,C,r 18 closed is based on the
following generalization of an estimate of Alber [3, p. 269].

Theorem 8.6. For each (p,%) € M and each r' > r > h there
exists a conmstant C = C(p,{,r,r') such that for all v"Qp,;,ru with

u € Gp C.r one has (see (4.30), (4.31) for notation)

(8.81) Tat?, oA )] +Idi2 ). ’

o,r' P>3,r

The proof of Theorem 8.6 will be based on a number of related
estimates which will be developed in a series of subsidiary lemmas.
The first is

Lemma 8.7. Under the hypotheses of Theorem 8.6 one has
(8.82) 19u'12 = (@) 1u"1Z = -2mi 3 Yot (8 luy (o) |2

vhere u' by (8.22) and up(y) = c_ exp {iy wpﬁn(C)}'

Proof of Lemma 8.7. The finiteness of the norms in (8.82) has

already been noted; see (8.57)., Passage to the limit n + -, n' + ® in {
(8.61) gives (8.82).
Lemma 8.8. Under the hypotheses of Theorem 8.6 there exists a

constant C, = C,(p,%,r,r') such that for all u € Gp r,r °0e has
9’ )

(8.83) Iuli’r. < €, lu(s,m)12,

Proof of Lemma 8.8. (8.83) follows from the proof of Lemma 8.1,

inequality (8.35).
Lemma 8.9. Under the hypotheses of Theorem 8.6 there exists a

constant C, = C,(p,Z,r,r') such that for all u € Gp c,r °ne has
>

(8.84) IVu"I;’r. < C, Tu(e,o2.
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The proof of Lemma 8.9, starting from (8.57), is exactly like

that of Lemma 8.8 and is therefore omitted.

Lemma 8.10. Under the hypotheses of Theorem 8.6 there exists a

constant C; = C4(p,%,r,r') such that for all u € Gp z,r °%e has
5

(8.85) |z ¥oim (S lu () 2] < ¢y bu(e, )12,

Proof of Lemma 8.10. One may take

C, = Max {lwp_hn(;)l P Imow(8) < 0} and use (8.34).

Lemma 8.11. Under the hypotheses of Theorem 8.6 there exists a

constant C, = C,(p,5,r,r') such that one has
(8.86) Iu'Ii < ¢, luCe,o)l2,

Proof of Lemma 8.11. Integration of (8.57) over r < y < =« gives

(8.87) lu'l2 = 2m ' lcmlz exp {-2r Im wm(c)}/z In wm(t;)

which with (8.34) implies (8.86) with C,(p,%,r,r') defined by

c;' = Min {2 Im wp+m(c) : Im wp+m(C) > 0}. This minimum is positive

because Im wp+m(c) ~ lp + ml, |m| + o (gee (8.66)).
Lemma 8.12. Under the hypotheses of Theorem 8.6 to each a > 0

there corresponds a constant 6 = 8 (h,r) such that for all u € G
[»3 a p’Csr
one has

. 2 2 2
(8.88) fu(e,0)1° < @ IVqu r + ea ““lo,r‘

Proof of Lemma 8.12. Recall that u e Cm(ﬁ;) and hence

um(y) € Cw[r,m). Hence, by a Sobolev inequality there is a constant

Y = y(h,r) such that for all € > 1 one has [1]
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(8.89) fu (£)|2<ye [J lu_(y)|? dy + €? I lu_(y) |2 dYJ
m - h m h m
Moreover, by Parseval's relationm,
L
(8.90) bu(s,y)i2 = J lux,y)[* dx =21 ] Ju (9% vy 21,
- ez
whence
2 r 2
(8.91) pul? = om mgz Jh luy( |2 dy,
2 t 2
. D_ul = .
(8.92) IDyulf = 2m méz Ih Dy vy |* dy

Combining (8.89) - (8.92) gives the estimate

. 2 -1 2 2 2
fuC,o)l* <y e (IDyulh,r + € '“'h,r)
(8.93)

-1 2 2 2
< v
<vye A u"o,r + € '“'o,r)

Choosing Y(h,r)e ! = a, y(h,t)e = y3(h,r)/a = Sa(h,r) in (8.93) gives
(8.88).

Proof of Theorem 8.6. The definition (8.52), (8.53) implies that

)

for all v = Q ¥ € D(Ap

P35 4
= 2 - 2
(8.94) Ap,c’r(v) bvi? - 2mi méz LAY lu () |2,

Combining this with Lemma 8.7 gives the representation




|
|
|

2 2 " 2
(8.95) Ap,;,r(V) = anl:’r + Va1l - w(2) tu'i - 21i T (C)Iu ()]

whence

12 4+ ivu'i? < 12+ 1Vu'l2
1ol Vu lr,r' < 1Vl o,r r

(8.96)

Re {A, . (") + T()lu'l? + 2mi Iy (0 |u, (x) |2}

A @]+ @] tetil + 2om (2 @) fug (0[]

PyG»r

It follows that

2 2 2 1y 2 2
llul1 0,1 IVVI + 1Vu’ ﬂ e + §Vu"y £, x + ﬂvﬂ + Iullr !
(8.97)
< 1" 2
A L@+ Im@ | et + 2w |2 v (@) (a0 |2

Vnz 2 2
+ 1"t ' + Iullr ot vt g o

Combining (8.97) and the estimates of Lemmas 8.8 - 8.11 gives

(8.98) Tub 3, co,rt S IAP’;,r(v)I + Cg lu(e,n)l? + uvng i
where
(8.99) Cs = C4(p,Z,r,r') = C, +C, + 21 Cy + |7(T)] C,.

On combining (8.98) and (8.88), and recalling that u = v in Qo o one
1 ]

finds

2
(8.100)  Julj,; .+ < |A

] + (c a)lleﬂ2 +(Cg 0, + IvI2 |

PrHr

b

@
Aypugare:

[osseey
et

o ]




where o > 0 is arbitrary. Defining a by Cja = 1/2 and C = C(p,Z,r,r')

= 2(C56a + 1) gives

2 1 2 1 2
(8.101) bul ., 1S3 C(|Ap’c’r(v)l Havig )+ 50

since %C = Csat + 1 > 1, Finally, (8.101) implies (8.81) because
IVl g p S Huly g g
Proof of Theorem 8.2. The denseness of D(A ) in L (Q )

’;’
follows from the obvious inclusion C?(Q ) = Qp r ce (Qo r) C D(A

C,T
The sectorial property of A was proved as Corollary 8.5 above.

p’C’r
To prove that A 0. C,r is closed let v(n) (n)’ with u(n) €G
’ ]

p’C’r

be Ap,c’r-convergent to v € Lz(Q ) and

(n) _ _(m) =
Ap,C,r(v v*"’) + 0 when n,m + ©, It must be shown that v Qp,;,ru

where u € Gp,C,r and Ap’c’r(v - v(n)) + 0 when n +» » [17, p. 313]. Now

Theorem 8.6 applied to v(n) - v(m) = Qp z r(u(n) - u(m)) implies that
’ ’

{u(n)} is a Cauchy sequence in Gp,c,r and hence lim u(n) =y € Gp,c,r

u since Q is bounded. Moreover, the
p$C’r
(n),

i i Vv - ¢
p,C,T implies that Vv v o,r

when n + ©, Hence, the representation (8.94) of Ap z r(v) implies that
b4 bl

exists. Clearly v = Qp,;,r

convergence of (™} touinG +0

to complete the proof of Theorem 6.2 it will be enough to show that

; (n) 2
(8.102) ii: mgz Vot (8 o (@) = w7 () ]2 =0

Now Lemma 8.3 and the relation (8.60), applied to the partial sums of

the Fouriler series of u € Gp,;,r in Qr,r' imply that
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2mi z w

@ lu_(0)]?
€z ptm m

(8.103)
= (u(',r').Dyu(',r'))

2 - 2
L,(-m,m + Tr(C)Hu“r,r' IIvullr,r"

It follows that (8.102) holds if

o w'Y o (m), . _» . w!'Yy - (n) . P! =
(8.104) ii: (u(e,r') = u" (-, ),Dyu( ,t') Dyu (e,x ))Lz(—n,n) 0.
To prove this define s = 1/2 (r+r'), s' =r + r' so thatr < s < r' <s'.

Then a Sobolev imbedding theorem {1] implies that

1A

l(u(‘,r'),Dyu(',r'))l fu(e, ") IDyu(°,r')H

(8.105)

1A
=
g
=
[+
=

ful 2 .
2;8,r'

IA

Moreover, the interior elliptic estimates of [1] imply that there exists
a C = C(r,r'") such that (see (8.42))
2 2 2 :
. (8.106) “uﬂz;s,r' < C(ﬂuﬂr’s. + IAuﬂr,s.). H

Since Au = -7(Z)u in Qr’ (8.105) and (8.106) imply

» ]
3 (8.107) [l ,DpuCr ] < et quig o |

where C' = C'(p,%,r,x'). Applying (8.107) to u - u(n) gives (8.104).

This completes the proof of Theorem 8.2. Note that the proof actually

implies '




Corollary 8.13. Qp Z,r is a topological isomorphism of the
’ b

é G A = G d by ¢
Fréchet space onto D( p,;,r) QP,Cnr o,C,1’ topologized by the

p,L,T
norm
2 1/2
(8.108) (]Ap’;’r(v)[ Vg )
Proof of Theorem 4.5. The densely defined, sectorial, closed
sesquilinear form A is associated with a unique m-sectorial

p’;’r
operator 'I'p ,r in Lz(Qo r) by Kato's first representation theorem [17,
b k4 >

P. 322]. Theorem 4.5 will be proved by showing that Ap,;,r = Tp,c.r'
The Inclusion A To prove this let v € D(A

CT .
P,G,T P,&,r )

P,Z,r
v. It will be

= C D(A ) and write z = -Av =

F
Po.tor 'p.T,r Ao tr

shown that

PsG,T

(8.109) Ap’c’r(v',v) = (v',A )o

p,;,rv = (v"Z)o,r’ v' € D(A ).

s T PaC,r

=z = A

Note that this implies that v € D(T d T
P T,z 2n p.g,

’ P:C,rv

h A c .
whence D, C,T Tp,;,r

Equation (8.109) will be proved by applying the generalized
Dirichlet or Neumann boundary condition to v; i.e., the integral
identities of the definitioms (3.19), (3.20) of D(A§°°). To this end

let r' > rand let ¢_ _.(y) € C”(R) be a cut-off function with the

properties

[
<
A

< (2r +1r")/3,
(8.110) 9

0, y>(r+2r")/3,

and ¢;’r,(y) < 0 (whence 0 < ¢r r,(y) <1). Then
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(8-111) Vr e P ¢r r'v' € Lg’p’com(g) or L;’p’com(Q)
and

(8.112) Wert = O W'+ ¢£,r' v'y

where § is a unit vector in the y-direction. The integral identity of

(3.19) or (3.20), applied to v € D(Aﬁoc) and v gives

r,xr'

0= (Vr,r|’AV)o’rv + (er, s YV) '
(8.113)

= (¢_ ', 4v)

r,r v + (¢r’r|VV',VV)°,r| + (¢;’er'sDyV)

o,r o,r'

Now the last term satisfies

v

r
(¢;,r'v"Dyv)0,r' = Jr J-" ¢;’r, vv(x,y) Dyv(x,y) dxdy

(8.114)

r' L
j ¢ (¥ [j v'(x,y) DYV(x,y)dXJ dy
r ? -7

T
-+ —J v'(x,Y) D v(x,Y)dx
- y

=2mi méz wp+m(c) v;(r) vm(r), ' *>r;

see [34, p. 57] for a similar calculation. Thus passage to the limit

r' = r in (8.113) gives

(8.115)  (v',&v)  _+ (W', W), - 2mi méz Votm

(@) vy (r) vy (r) = 0
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for all v' e D(Ap,c,r)' The definition (8.52) of Ap,c,r implies that
(8.115) is equivalent to (8.109).

C
The Inclusion TP;C,r Ap,;,r' To prove this let v € D(Tp,c,r)
and Tp,c,rv =z € LZ(Qo,r)‘ This is equivalent to the identity
A ' - '
(8.116) p,l;,r(v ) = (v ,z)o'r
or
' o' (r) = '
(8.117) (W', W), - 2mi mé Vorn(®) V(D) vp(n) = (v',2)
Z
[ A ' ot
for all v' € D( p,t,r)' Taking v' € C°(Qo,r) glves
(8.118) <Av = z in Qo,r
by elementary distribution theory. Thus to complete the proof it is
€ . F
enough to show that v D(Ap,c,r) Note that the definitions of P.C,T
dG impl
an psg,r TP
(8.119) F -6 n 1%, 0).

PsG,T PsG»T 2

Loc

Thus it will suffice to show that u = Q v satisfies du € L,” (Q).

-1
p!C!r
This will be done by calculating the distribution Au. To this end note

that for all § € C:(Q) one has

8.120 -4y, = (W,V
because u € L;’zoc(ﬂ). Thus
(8.121) 800 (g =TI, (T T

Now equation (8.117) with v' = y gives
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(8.122) W00 = Wo2)g 4 2m L (D) 3 () vy (o).
’ ? o

It will be shown that the last term in (8.121) satisfies

(8.123)  (W,Tw)_ = T (Y,u), - 21 ]

Adding equations (8.122) and (8.123) and using (8.121) gives

(8.124) (-A¢,H)L2(Q) = (W.z)o’r + ﬂ(C)(W.u)r’m = (w’f)Lz(Q)
where

z(X), Xe€ QO r’
(8.125) f(X) =

7(¢) uX), X € Qr

o

Thus -0u = £ € LEO%(Q),

The proof of Theorem 4.5 will be completed by verifying (8.123).

To this end recall that u € Gp . and Au = -m(Z)u as a distribution in
» ]

Qr,m. Now define er,r.(y) =1 - ¢r,r'(y)’ where ¢r,r' is defined as

above, and define

(8.126) Ve pr = 0 ¥ € CT.

Then the distribution definitions of Vu and Au in Qr o 1mply
’

(Vwr,r"vu)r,m = (~Awr,r"u)r,m = (wr,r"-Au)r,w

(8.127)

=T Wy )
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On the other hand, proceeding as in the first part of the proof one finds

(P, W) o= (8, W, Tu), ,+ (8] W.Dw).

r,r"? r,® r

(8.128)

> WV + 2t f oo () Y (n) up ()
’ 2EZ

when r' + r. Thus passage to the limit r' + r in (8.127) gives (8.123)
because v = Qp,c,ru satisfies vm(r) = um(r).

Proof of Theorem 4.6. The proof of the continuity of

{ | (p,%) € M} will be based on a criterion established by Kato

Ap,C,r
[17, Theorem IV-2.29]. Thus for each (po,co) € M one must construct a
Hilbert space K, a neighborhood N(p,,%,) € M, operators U(p,3),

v(p,Z) € B(K;Lz(ﬂo’r)) for (p,%) € N(p,,%,), and operators

u,v € B(X;Lz(ﬂo’r)) with the properties that U(p,Z) and U map ¥ one-to-

one onto D(Ap z r) and D(A ), respectively,
»

H po’;o’r
(8.129) Ap’;,r U(P:E) = V(P’;)’ Apo’co’r U=1yv,
and
(8.130) lu(p,z) - Ul » 0, IV(p,g) ~ VI » 0 when (p,g) + (p,,C,)-

The space K will be defined by

- 1
(8.131) K=, o) LA, .

Theorem 4.4 implies that ¥ is closed in the topology of L;(A,Qo r) and
?
hence is a Hilbert space. Next a neighborhood N(p,,,) and linear

operators

(8.132) J(P+8,Pe550) € BEGLL (8,2 1)), (P,5) € N(pyaZy),
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will be constructed with the properties

(8.133) J(P»%sPg>G) maps X one-to-ome onto D(Ap )
25
(8.134) J(Pys8GesPgrCy) = E 1s the natural embedding of
X in L3(8,9, ),
(8.135) (P,C) - J(pa;tpovgo) € B(x;L;(A,QO r)) is continuous

at (pg»>%a)-

The desired operators can then be defined by
(8'136) U(p’C) = Eo J(P:C:Poygo)’ U= U(po’Co):

(8.137) V(p,0) = A, - o U(p,8), V = V(py,5y)»

P»&

where E; : L;(A,Qo r) -> Lz(Qo r) is the natural embedding. It is clear
9 ’
that these operators are in BC}C,LZ(Q° r)) and U(p,Z), U map ¥ one-to-one
]

onto D(Ap z r)’ D(A r)’ respectively. Equations (8.129) hold by
”

b

po’Coa
definition. Moreover,

iu(p,%) - ul = “EO(J(P,C,PD,CO) - J(PosCO,Po,Co))l
(8.138)

< IJ(P,C,Po,Co) - El -0

when (p,Z) * (po,co) by (8.134), (8.135). Similarly, for all u € X,

1(V(p,2) - Viul = 1AJ(P,5,pg58,)u = AJ(Pgs5gsPgs500u0, o

(8.139)

IA

13(psZ,Pgs%4)u = Eu '1,A;°,r

IA

|J(P,CsP°,Co) - El |U|“
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whence

(8.140) 1V(p,2) - VI < 13(p,Z,py.5,) - El + 0

when (p,Z) + (p,,%,). The proof of Theorem 4.6 will be completed by

constructing the family J(p,Z,p,,5,). The cases of the Dirichlet and

Neumann boundary conditions will be treated separately.

Construction of J - The Dirichlet Case. The construction

generalizes one of Alber [3]. To describe it let veE X = D(Ap z r);
0*>0?

Pp z,c% ¢ €F . The Fourier expansions of v and u have
>

i.e., =
v PyrLosT

the forms

(8.141) v(x,y) = [ vy (y) exp {i(p, + m)x}, (x.y) € @ _,
= ’

(8.142) u(x,y) = } u (y) exp {i(p, + m)x}, (x,y) € Qo
1. =¥ ’

Moreover, v_(y) = u (y) for h <y <r and

(8.143) u () = ¢ exp {iywpo_m(;o)} for y > r.

Next introduce a function § € Cw(R) such that

1l for == <y<r, = (r+ 2h)/3,
(8.144) E(y) =

0 forr; = (2r+ h)/3 <y < =

and £'(y) < 0 (whence 0 < £(y) <€ 1), and define, for each y € R,

(8.145)  d (p.ZypgsTy,y) =exp {1y (v, (2) =V 4m G 1= EMI+E().




|
&
!

Choice of N(pg,Zg)- The equicontinuity of the functions wp+m(;),

Theorem 4.2, implies that there exists a neighborhood N(po,;o) C M such

that
(8.146) lexp {1y [wp_m(;) - wpo-l-m(c°)]} -1} <1/2
for all (p,Z) € N(py,C,), M€ Z and y € R. Thus, using ||z,| - |2,]|

< |z, - z,] one has

lldm(PsC’Po’co’Y)l - ll < Idm(P9C’P09Co'Y) - ll

(8.147)

S lexp {1y vy (@ = w, 1 (EI1I-1]|1-ED | < 1/2
and hence
(8.148) 1/2 < |d_(p,C,Pgs5e>¥) | < 3/2

for all (p,%) € N(py,%y)s @ € Z and y € R.
Definition. For all v € X = D(A ) with expansion (8.141)

PosGo»T
on Qh,r let

J(P,C:PO,CQ)V(x,Y)
(8.149) méz d_(PsZT5Pgs%0»¥) vy (¥) exp {1(pytm)x} in Qh’r,
= exp {1(p-p,)x}

v(x,¥) in Qo,h’

Note that dm(p9§,P°’Co’Y) £ 1 and hence J(P,C,PO,CO) V(X’Y)

= exp {1(p-pg)x} v(x,y) for (x,y) € Q ... Thus the definition produces
»T)

no discontinuities at y = h, The proof that J has the properties (8.132)

- (8.135) will be developed in several lemmas.
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Lemma 8.14. There exists a constant M = M(N(py,5,)) such that
(8.150) DX d_(p,%,pys G070 | < M
. ym 99030, -

for all (p,%) € N(p,,5), m€ 2, y €ER and k = 0,1,2.

This result follows easily from the definition (8.145) and the
equicontinuity of the family {wp+m(C)}.

Lemma 8.15. J satisfies (8.132); i.e., for all v € D(APo»Co-r)

one has J(p,%,py,54)V € L;(A,Qo r) and there exists a C = C(p,,g,)

such that

(8.151) LI(P’C’PooCO)Vl <cC vt

1,4;0,r 1,A;0,x

for all v € D(A ) and all (p,%) € N(Po.Cg)-

p°’c°$r
Proof of Lemma 8.15. For all v € D(A ) one has
po’;o’r
THPES SR LA IR
(8.152) 0
- 2 2
Iv'l,A;o,h + 'VII,A;h,r
2 z r 0
= vl . + 2w J I'(y) dy
1,4;0,h £z ‘n B
where

(8.153)  ID(y) = (1+ |pytm|?) |v |2 + |nyvm|2 + |D;vm- (potm) v |2.
Similarly, writing

(8.154) T vp(3) = d (Ps8sPgsty,y) vy (3),




<
13(P,Z25Pgs8oIVAT 4. o = Bexp {1(p-po)-Ivi} . y+2m ] I I, (y) dy
ez 'h
(8.155)
where

- 2 2 2 2 - 2 2
(8.156) I (y) = (1+ |ptm|?®)[av |?* + IDvahl + ]Dvam (ptm)2Jv_| 2.
Now a simple calculation gives the estimate

(8.157) lexp {1(p-py)-Ivl, p S C vl 0

where C, = C,(N(py,5,)). Similarly, Lemma 8.14 implies that there is a

constant C, = C,(N(py,%,)) such that

(8.158) I ()

A

2 10
C, Iy

for all (p,Z) € N(py,%y), m€ Z and h < y < w, It follows that

J(P»T:Pg»5,)V € L1(8,9, ;) and (8.151) holds with C? = Max (C},2nC2).
?

Lemma 8.16. For all v € D(A ) one has
- PgsGosT
(8.159) J(P:5sPgsGg)V € D(Ap,c,r)'
Proof of Lemma 8.16. Since D(A ) = F it must be

P
Ps3sT"  PyGyI  PyL,I
shown that v = J(p,%,p,,5,)v has a continuation & to Q which is in
FP,C.r' Recall that for h <y < r one has u (y) = v (y) and hence

(8.160) Vxy) = L 4 (Pi8apysG,»y) up(y) exp {1(ptm)x}
nEZ

where um(y) is defined by (8.142), (8.143). Moreover, for h < r, <y<r

one has
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(8.161) d) (Ps5,Pg»50sy) = exp {1y ["pm(‘;)“’pom(’;o)]}

and hence it is natural to define the continuation of ¥ by (8.142),

(8.143) and

(8.162) a(x,y) = Z c exp {ix (pim) + iyw

(C)}, y 2 r.
ez pim

It is clear from the convergence of (8.142) in Li’lOC(Qh) (Lemma 4.1) and
Lemma 8.14 that (8.162) converges in L;,loc(gr) and hence u € L;’QOC(A,Q).
Also, the po-periodic boundary condition satisfied by v, together with
(8.149) and (8.162), imply that u satisfies the p-periodic boundary
condition. Moreover, u(x,y) = exp {i(p-py)x} u(x,y) in Qo,h énd hence

U satisfies the generalized Dirichlet condition (i.e., U € Lg,p,loc(g))

D,%oc
P
Finally the expansion (8.162) has the form (4.28) corresponding to

because u € Lg’p°’£°c(ﬂ). The preceding shows that u € D(A ).

(p,C) € M and hence u € Fp,C,r'

Lemma 8.17. J(p,%,Py,5,) maps D(A ) one-to-one onto
- Po,CO’r

D(Ap,c.r)’

Proof of Lemma 8.17. Leuma 8.16 implies that J(p,Z,p,,%,) maps

A into D(A . .
D( Po’co’:) nto ('p,C,r) Moreover, it is clear from (8.149) and

(8.141) that J(p,%,pPys,5,) 1s injective. The surjectivity may be verified

by constructing the inverse. To do this let v = P u € D(A

P,C,T p,g,r) 24

(8.163) v(,y) = § v (y) exp {i(ptm)x} in Q
A

sT

and define
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méz dm(p.t:.p.,,co,y)_1 vp(¥) exp {i(ptm)x}in @ .,
vy (x,y) = exp {1(p,~p)x}

(8.164) v(x,y) in ..
o,h
-1
Note that Idm(p,C,po,Co,y) I < 2 for all (p,C) € N(p,,%,)s m € Z and
y € R. Hence the technique used to prove Lemma 8.16 can be used to show

that v, € D(A r) and J(p,C,po,co)vo = v.

PosGos
Property (8.134) is obvious from definition (8.149) because
dm(po,co,po,co,y) £ 1. Hence the verification of properties (8.132) -
(8.135) of J may be completed by proving
Lemma 8.18. (p,Z) —+ J(p,c,po,co) € BCK,L;(A,QO F)) is
4

continuous at (Py,3G,).

Proof of Lemma 8.18. It must be shown that 01J(p,Z,p,,5q) - El + O

when (p,%) > (py,8y). An equivalent condition is

(8.165) HJ(P;C)FO’CO)V - EVHI,A;O,I + 0 when (P,C) > (po:Co)r

uniformly for all v € } such that IV, pioor <1 [17, p. 150]. To
s b4 *

verify (8.165) define a bounded operator T,p inL3(8,2, ) by
0

(8.166) Toop, V¥ = exp {1(p-py)x} v(x,y).
0

Then for all v € ¥ one has

IJ(P:C’posCo)V - EVHI,A;O’r

(8.167)

< - -
S UI(P,ZPysCy)V Tp-pov'l,A;o,r + ITp_pov Evll’A;o’r.

T B o T S,
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: Moreover one has, by (8.149) and (8.166),
J(PsC:PO:Co) V(xs}') - Tp_pov(x’y)
; (8.168)
1 {d (p,%,p0sC0sy) = 1} v (y) exp {1(p+m)x} in Y o
' neZ
0 in Qo,h’
whence
T
(8.169) 13(Ps2,PgsEe)V = Ty qvhy oy o= 20 méz Ih L) dy
where
1 - 2 2 2
L = A+ |p|®) |t v |?+ l(ny £V + £ Dy v |
(8.170)
2 2 2 2
+ Ifm Dy vy + 2Dy £, Doov + Dy ) vy - (pm) £ vm|
: ) and
(8.171) fm = fm(p’CQPO:Cos}’) = dm(P,Cypo’gosY) - 1.
) ? Now using the equicontinuity of the family {wp+m(§)} and Lemma 8.14 it

) i is not difficult to show that for each € > 0 there is a neighborhood

N'(pys%q) of (py»%,) in M such that
(8.172) 0 < I(y) <e? 13(y)

for all (p,Z) € N'(py,5,)> m€ 2 and h < y < r, where Ig(y) is defined

by (8.153). It follows that (see (8.152))

~
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(8.173) 13(Ps8sPgs5g)v = T SEdvly a0 o SE

p—povul’A;o’r

for all v € X such that Ilvlll’A;o’r < 1.

Similarly, an elementary calculation gives

(8.174) ITp_pov - Evnl,A;o,r <€

for all v € } such that Ilvll1 Aso,r < 1. Combining (8.167), (8.173) and
s ’ b ]

(8.174) gives (8.165).

Construction of J - The Neumann Case. The mapping J defined by

(8.149) is not applicable to the Neumann case because the operation

v > exp {i(p - po)x}v does not preserve the Neumann boundary condition.
It will be shown that for grating domains G € S a suitable mapping J can
be defined by replacing the multiplier exp {i(p - p,)x} by a function of
the form exp {i(p - p,) ¢(x,y)}. To this end note that if x, has
property (1.9) of the definition of the class S then so do the points

Xy + 2™m, m € Z. Moreover, it can be assumed that x, = -m since
equivalent domains are obtained by tramslating G parallel to the x-axis.
This assumption is made in the remainder of this section. Also, to

simplify the notation it will be assumed that
(8.175) 3¢ n {(-m,y) | y € R} = (-m,y,)

is a single point. The general case defined by (1.9) can be treated by
the same methnd.

Property S implies that near (-w,yo) the boundary I has a
representation (x,y) = (f,(s),£f,(s)), where s is the arc length on T

measured from (-n,yo), and fj € C3. The vectors t = (f{(s),fg(s)) and
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7= (-f;(s),f{(s)) are unit tangent and normal vectors to ', respectively.

The mapping (s,t) * (x,y) defined by

X = fl(S) -t fi(S),
(8.176)
y=£,(s) +t £/(s),

has Jacobian 1 at (s,t) = (0,0). Hence the inverse mapping

s = 0(x,y),
(8.177)

t = 1(x,y),

exists in a neighborhood of (-n,yo) and defines there a coordinate system
of class C2. The system is valid in a domain 0 = {(s,t) : Is| < &,,

|t] < 8,}. It will be assumed that §,, §, are chosen so small that

0c {(x,y) : |x+ 7| <w}. If extensions of o(x,y), T(x,y) to

0 + (2m™,0) are defined by o(x + 2mm,y) = o(x,y) and T(x + 2m,y) = T(x,¥)

then the extended functions define coordinate systems in 0 + (2mm,0).

Introduce functions Ej € C(R) (j =1,2) such that Ej(—a) = Ej(a),

E;(a) <0 for @ > 0 and

2 84/3,
(8.178) £y(a) =

> 28,/3,

(whence 0 < £j(a) < 1). The composite functions &,(o(x,y)) and
g&,(t(x,y)) are then in class C%?. Similarly, introduce a function £3(x)

such that




)
']

v g a— e g

1, |x+ 7w < 8,/3,

(8.179) Ei(x) =

G, 285/3 < |x + 7| < &,
and
(8.180) Ea(x + 2m) = £3(x)

where 8§, < w. Finally define

¢(x,y) = (0-m) £,(0) £2(T) + x E3(x)([1 - E,(T)], -m < x <O,
(8.181)

¢(x,y) = (o+m) §,(0) &,(1) + x E3(x)[1 - E2(1)], 0 < x < .

The two parts of the definition are consistent because both give zero in
a neighborhood of the y-axis. It will also be assumed that §, is so
small that £;(o(#m,y)) = 1 on the support of &,(t(*m,y)).

The mapping J defined by (8.149) with exp {i(p - po)x} replaced
by exp {i(p - p,) ¢(x,y)} has the required properties (8.132) - (8.135).
The proofs are the same as in the Dirichlet case except for the verifi-
cation that v' = J(p,c,po,co)v satisfies the Neumann and p-periodic
boundary conditions. To verify the Neumann condition note that on the
portion of I in the neighborhood defined by

supp ¢ N {(x,y) : |t(x,y)| < §,/3} one has
(8.182) o (x,y) = (0(x,¥) £ ) &;(0(x,y)).

Moreover, on the regular portion of ' a simple calculation based on

(8.176) gives
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(8.183) O = Ty = £1(0), o, = -t = £;(0)

y

whence
(8.184) Dv o= (-f;(c))cx + (f{(o))cy =0,

It follows from (8.182) and (8.184) that v'(x,y) (=exp {1(p-p,)$(x,y) Iv(x,¥)

on Qh) satisfies
(8.185) D, v' = exp {1(p-po)¢} (D v + 1(p-po)D,, ¢) = 0

on supp ¢ N I'. On the remainder of ' v' = v satisfies the generalized
Neumann condition. The validity of the generalized Neumann condition
for v' follows by a partition of unity argument.

To verify that v' satisfies the p-periodic boundary condition
note that (8.181) and the assumption that §1(oc(2mw,y)) = 1 on the support

of &a2(t(2m,y)) imply

o(m,y) = (o(m,y) + m &,(t(m,y)) + (1l - E,(t(m, 1))

(8.186)

(o(-m,y) + m &,(t(-m,y)) + (1l - &§,(1(-m,Y¥)))

¢(-m,y) + 2r £ (1(-m,y)) + 2m(1 - §,(1(-m,¥)))

o(-m,y) + 2w

and similarly

(8.187) D, #(m,y) =D ¢(-7,y).

Thus
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v'(m,y) = exp {1i(p - py) O(m¥)} v(m,y)
(8.188)
= exp {1(p-py) ¢(-m,y) + 1(p~p,y)2m + 2mip,} v(~m,y)
= exp {2mip} v'(-m,y)
and similarly

(8.189) D, v'(x,5) = exp {1(p-py)0} (D v + i(p-Po) (D, $)V)

whence

D v'(m,y) = exp {1(p-py) ¢$(-T,y) + 1(p-po)2m + 2mip,} x

(8.190)
x {D v(-m,y) + 1(p-po) D, ¢(-m,y) v(-m,y)}
= exp {2wip} D v'(-m,y)
The above discussion completes the proof of the continuity of the
family {A : (p,z) € M}. The final assertion of Theorem 4.6 states

P»C,T

that for fixed p € (-1/2,1/2] the family {A.p : T E Mp} is holomorphic ‘i

38, T
in the generalized semse of Kato [17, p. 366]. This may be proved by
means of the family of operators JP(C,CQ) = j(p,c,p,go). It is only
necessary to verify that 7 -+ Jp(c,co) is holomorphic on Mp' A proof has
been given by Alber [3, p. 271].

P f Th 4.7, = P 1 d '
roof o eorem D(AP»C,I) PaL,T Fp,;,r is a close L

subspace of the Hilbert space L!(A,Q. ), by Theorem 4.4. A -z
2 o,r PsC»T
defines a bounded operator from this space into L2(Q° r). Thus the
?
operator T : Lz(Qo’r) -+ D(Ap,;,r) defined by Tf = R(Ap,;,r’Z)f for all

£ € L(Q, r) is closed and defined on all of Lz(Qo r)' Thus T is
b} »

bounded, by the closed graph theorem.
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Next note that R(Ap,c,r’Z) = ET where E : D(Ap,c,r) -+ LZ(Qo,r)

is the natural embedding. Hence, the compactness of the resolvent of

Ap Z,r follows from the compactness of E. Now, in the Neumann case
R

1
F cL,’”
PiGor 2

hypothesis G € LC. In the Dirichlet case, F

P»G,r
0 1, %2c ’
= closure of Cp(Q) in L’ (). The last set can be regarded as a

1
subset of Lz,p,loc(Bo) for which the natural embedding into L

2'oc(SZ) and hence the compactness of E follows from the

c LB,P,QOC(Q)

Loc

. (By) has

the local compactness property. Hence, in this case E is compact without
local restrictions on I' = 3G N Q. This proves the compactness of the
resolvent of A

PsC,r’
see Kato {17, p. 187].

The discreteness of G(Ap z r) follows immediately;
b ] ]

Proof of Theorem 4.8. It will be shown that if ¢ € M; then the

operator in Lp(Q, ;) defined by
’

(8.191) TeR L R@L,T (D) P,

is a bounded inverse of Ap,c,r - np(c) in LZ(Qo,r)' To prove that T is

a right inverse of A - Np(;) let f € Lz(Q° r) and define
’

P,C,T
= . (3
u R(AP,WP(C))E Then u R(Ap) and

f in Qo -

H

(8.192) (Ap - np(c))u =P f=
0 in Qr.

In particular, (A + ﬂp(c))u = 0 in Qr and thus since u € L,(R) the
Fourier expansion (4.28) must hold with Im wp+m(c) >0 for all me 2.

Th €F d it £ P
us u 2,0, an ollows that P,C,ru € D(Ap,;,r) and

(8.193) A ’r-np(z;)]'rf- {A

,r‘"p(‘:)]Pp,;,r“ = (—A-ﬂp(c))u Qo,r- £

P>5 PsZ

by (8.192).
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To prove that T is a left iaverse of A - 7 (%) let
P>L»t P
v € D(Ap,c,r)' Then u = P;:;’rv has Fourier expansion (4.28) with

Ie) 1
Im wb+m(C) > 0 for all m € Z because € M;. Thus u € Fb, r L,(48,9)

g,
= D(Ap) and one has

-1
Pelay g,r =~ M@V = (A - M @R Y

(8.194)

1

= (B - MNP Ly

v

whence T[AP,C,I - "p(C)]V = v,

Proof of Theorem 4.9. The family of operators

{Ap,c,r - ﬂp(c) I g € Mp} is holomorphic (Theorem 4.6) and has compact
resolvents (Theorem 4.7). It follows from a theorem of Kato [17, p. 371]
that either Zp - Mp or Zp has no accumulation points in Mp' But
M; N Zp = ¢ by Theorem 4.8. Hence the second alternative must hold.

To prove that Zp is independent of r > h let h < r' < r and
suppose that ﬂp(c) € O(Ap,c,r)‘ Then there exists a non-zero

v E D(Ap,c,r) such that (Ap,c,r
=1 1,%0c
= € > - .
u=P M EF Sl (4,0) and (A + T (D))u = 0 in all of Q. In

- np(;))v = 0 in LZ(Qo,r)‘ But then

particular, the Fourier expansion (4.28) holds in Qr Thus u € F

) .
’oo

- WP(C))P

PsG,t'

and hence P yu € D(A = (. Thus

P»5,I P»C,T ) JR4% & p,g,c'
np(;) € G(AP,C,I') as was to be shown. The same argument is applicable

¢) and (A

if r' > r.

Proof of Corollary 4.10. Theorem 4.7 implies that every z € C

is either an eigenvalue of A or lies in p(A

P.L,T p,c,r)' Hence for each

e -
z Mp Zp one has np(c) € O(Ap,c,r) and it follows from {17, p. 367]

that R is holomorphic on M_ - Z . Thus to complete the proof it is
Ps»CHT p P

o e I 8 3 .. St 0 Vi SRR . Y,
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enough to show that each g, € Zp is a pole of R This will be

PsC,r’
deduced from S. Steinberg's theorem [28] and the following

Lemma 8.19. let ¢ € M; and Im ﬂp(C) > 0 (resp., < 0). Then
every z € G(Ap z r) satisfies Im z < 0 (resp. > 0).

) be an eigenfunction of

Proof of Lemma 8.19. Let v € D(A
P.5,r

with eigenvalue z : v # 0 and A v = zv. Then

Ap’;,r P’C’r

wu=pP! veF

P,L,T P2, and hence

(8.195) (A+ z)u= (A+ 2)v =0 in Qo 2 and
(8.196) (A+ 2")u =0 in Qr,w

where z' = ﬂp(C). Moreover, Lemma 4.1 and Sobolev's embedding theorems
imply that y = u(*,y) is in C!([h,®),L,(-W,m)). In addition, the
assumption § € M; implies that u € D(Ap) CL,().

Application of Green's theorem to u and u in Qr « Bives, by
y

(8.196),
(8.197) (=24 Im 2z") J |u|z dX = - Iﬂ {E-QE -u EE} dx.
Q gl 9y dyjy=t
T,®
Similarly, application of Green's theorem in Qo ; 8lves
b4
(8.198) (-24 Im z) J |u|? dX = J“ {K<§E -u 93} dx.
Q - dy 3yjy=t
o,r
Adding (8.197) and (8.198) gives
(8.199) Im 2' J |u]2 &X + Im =z J [u]2dx = 0.
Q Q

r,® o,r
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Thus if Im WP(C) =Imz2' >0 and Im-z > 0 then u(X) 2 0 in Qr,m. But
then u(*,r) = 0 and Dy u(*,r) = 0 and hence u(X) = 0 in Qo,r by the
unique continuation property for (8.195). Hence Im wp(C) > 0 implies
Im z < 0. The other case is proved in the same way.

Returning to the proof of Corollary 4.10, it will be shown first

that every %, € Zp such that

(8.200) Im “p(Co) >0
is a pole of Rp Z,c To this end choose f; € M; such that Im Wp(Cl) >0,
so that
(8.201) {z | Imz>0}cC p(Ap,cl’r)
by Lemma 8.19. Next choose a z; € C such that
(8.202) z, € p(Ap,Cl,r)’
. E ’ ’
(8.203) z, p(Ap,C,r) for all g € N(g,,9)

where N(5y,6) is the component of ﬂ;I(D(wp(co),G)) containing Z,.
N(Z,,3) has compact closure and hence such numbers z; exist by Corollary

8.5 above. In the remainder of the proof the following notation is used:

R(Z,2) = (A 2)7t,

p,C,r -
(8.204)

R(g) = R(Z,m,(2)).

With the above choices of g, and z, the operator

(8.205) B(z) = (1 - (z - 2,) R(Z;,2, )"
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exists and is holomorphic for Im z > 0 ({.e., in an open set containing

Im z > 0). Indeed,

(8.206) 1-(z-2z) R(G,,z) = (A - z) R(Z,;,z2;)

PiG,»T

and the existence of B(z) follows from (8.201). The analyticity
follows from that of R(3g,,2).

To complete the proof of Corollary 4.10 note that (8.200) and
). Since the resolvent set is

pa;1)r
open, the continuity of ﬂp implies that there exists a § > 0 such that

(8.201) imply that T (C,) € (A

ﬂp(C) € p(A r) for all g € N(Z,,8). Hence B(wp(;)) exists and is

p’cl’
holomorphic in N(Z,,§). Now for all such Z one has, by (8.202), (8.203),

1- (ﬂp(;) - zl) R(C,Zl) =1 - (NP(C) - zl) R(Cl’zl)

(8.207)

- M@ - z)) {R(5,20) - REyez)) )

Multiplying by B(np(c)) gives

where
.
| (8.209) T@) = (T (0) - 2,) BT (2) {RG,2y) - R(z,,2)))
) defines a compact operator-valued holomorphic family in N(g,,8). By
)
" v Steinberg's theorem [28], (1 - '1‘(C))'-l either exists nowhere or is

. ' (8.208) B(ﬂp(c)){l - (M (@) - zy) R(g,z,)} = 1 - T(Q)
|

|

|

|

i meromorphic in N(G,;,8). The second case must hold because the
F

|

singularities of (1 - '1'(;))—1 are those of R(Z) and hence are isolated.

IR In particular, for § small enough (1 - T(Z))~' is analytic in N(Z,,9)
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except for a pole at { = §,. Equation (8.208) then implies

-1 -1
(8.210) Ap,c,r - wp(c) - B(wp(c)) (1 - T(%)) R(L,z,)

and therefore

1

(8.211) R(Z) = R(%,z,)(1 - T(D))~ B(wp(c))

for ¢ € N(Z,,8) - {¢,}. This exhibits R(Z) as a product of operators
that are holomorphic at ;, and one that has a pole there. The residue
of R(Z) at Z, has finite rank [28] and hence wp(;o) is an eigenvalue of
finite algebraic multiplicity [17, p. 181].

Proof of Corollary 4.11. This result follows immediately from

Theorems 4.4 and 4.8.

Proof of Corollary 4.12. It will be shown that

4
(8.212) Oy (Ap) c 'n’p(Mp N Zp).

The discreteness of oo(Ap) will then follow from Theorem 4.9. To prove

(8.212) let X € co(Ap) c c(AP) = [p?,®) and let A * i0O denote the points of

oy

above A so
(8.213) ﬁp(l + 10) = A.

Ifue D(AP) is a corresponding eigenfunction of Ap then u € Fp,AtiO,r’

v u € D(A

P,Ati0,r p,Azi0,r
(Ap,kiio,r - ﬁp(l + 10)) 1is not invertible and hence A * 10 € ZP.

+ ™ Pp,AtiO,r ) and (A - )\)v:t = 0. Thus
The inclusion (8.212) and Theorem 4.9 imply that oo(Ap) has no
finite limit points. To show that each A € Uo(Ap) has a finite dimensional

eigenspace note that the algebraic and geometric eigenspaces of Ap

coincide because Ap is selfadjoint. Moreover P A+i0.p DAPS the eigenspace
yi= ]
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of A € oo(Ap) onto the geometric eigenspace of A for A, as was

p,A%i0,r
shown above. However, the latter coincides with the geometric eigenspace
of the compact operator R(A * 10,z) defined by (8.204) and hence is
finite dimensional.

Proof of Corollary 4.13. To prove (4.43) note that if

+ T+
- A A - M ng
p= ‘rrp(Mp N Zp) Tp then A + 10 or 10 is in o D and hence

A= np(k *+ i0) is an eigenvalue of A T with eigenfunc-

p,A+i0,r °F Ap.a-10,r

-1
tion v_ or v_. But then u = v, oru_=

+ Pp,A+10,r + v_ will have

-1
Pp.A-10,r
a p-periodic extension to G that is a pure outgoing or incoming R-B wave
for A. It follows from Theorem 2.1 that u, or u_ is an eigenfunction

for Ap with eigenvalue A; i.e., A € co(Ap).

Proof of Theorem 4.14. Both statements of Theorem 4.14 follow

from the continuity of the family {Ap cor
’ 1]

Kato [17, Theorem IV.2.25]. Indeed, iIf (po,co) € M - I then

(p,z) € M} and a theorem of

ﬂp (g,) € p(A ) and hence R when (p,Z) =+ (Pyr%,)-
0

-+ R
PgslosT P»Z,T PgslgsT
Moreover, it follows from Kato's theorem that there exists a neighborhood

N(po’Co’p’s) C M - Z'

Proof of Theorem 4.15. This result is an immediate corollary of

Theorem 4.14 and Theorem 4.4.

Proof of Corollary 4.16. Theorem 4.15 implies that (p,Z)
-1 ’
> Pp,c,r Rp,c,r € B(Lz(Qo’r), L;(A’Qo,t')) is continuous on M - I for
each r' > r. This implies (4.49) with

(8.214) C(K,r,r') = Max 1P}

R | '
(p,Z)EK P»C,r P,C,r I,T

where l'“r,r' denotes the aperator norm in the space B(Lz(go,r)'L;(A’Qo,r'))'

Proof of Corollary 4.17. This result is a special case of

Corollary 4.16.




§9. Proofs of the Results of §5.

Theorem 5.1 is a direct consequence of Theorem 2.1 and the

results of 8§4.

Proof of Lemma 5.2. The proof follows the plan of [34, Lemma

6.3]. Definitions (5.16) and (5.25) imply that if £ € L;°"(R) then

|

£ (pm,q, 2) 3, (K, prm, ) 3(y) £(X) dX +[ o' (X,pm,q,2) £(X)dX

supp f supp f

(9.1)

J£),y (ptm,q) + J R(AP;E) M(*,ptm,q) f(X) d&X
supp £

@67 (rrm,q) +j MK, pra, @) R(A,2) £(X) dX

» T

(3 £); (pm,q) +

+] G o, )11 (596, Ko, O R(A,2) £(0) &
Q
h,r

since ¢'(*,ptm,q,z) = R(Ap,z) M(*,p+tm,q) by (5.13) and Theorem 4.8 and

supp M C Qh,r' The next-to-last equation follows from R(Ap,z)

= R(AP,E)*. To derive (5.26) from (9.1) it is necessary to integrate by

) parts in the last integral. This cannot be done directly because

: 3(y) ¢,(X,ptm,q) € L,(Q. To complete the calculation introduce a
function £ € Cm(R) such that £'(y) < 0, £(y) = 1 for y < 0, §(y) = 0 for

y > 1 and define

b

" 51 1
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l,YEn,

9.2) Ea(y) = &E(y - n) =

0, y>n+ 1.

"

Then for n > r one has En(y) 1 on Qo r and hence

f(ptm,q,z) = (J£)7 (p+m,q)

(9.3)

+ JQ @ (o, )13 (1) 6, (K, )T 6 (7) R(AL,2) £CD) &X
Now
(9.4) 3G) ¢, prm,0) € DA HOC@) (resp. DAY @),

This may be shown by interpreting exp {-ipx} ¢,(X,p+m,q) as a function
on the cylinder QY (see the proof of Lemma 4.1) and recalling that j(y)

=0 for 0 <y < (htr)/2. Moreover,

(9-5) En R(Ap,z)f = L;’P,Com(n) (resp. LE,P,Com(Q))

since R(Ap,z)f € D(Ap). Conditions (9.4), (9.5) and the integral
) identities of (3.19), (3.20) applied to u = j¢, and v = EnR(Ap,z)f O

) give

JQ A {3(y)9, X,p*m,q)} En(y)R(Ap.Z)f(X)dX
(9.6)

= - jQV {1(me, X,ptm,q) } V{an(y)R(Ap,Z)f(X)}dx if
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(9.6 cont.) = —j ¢ TOE,, 316,00 T - HE (IR, 2)E () ek
o) p

where J € C?(h,w) and J(y) 21 for y > (h + r)/2. Now

9.7) Iy, 6 opim,) € 1P, )
and
(9.8) £, IO R(ay,2) £ € DEANQ, )

and a second application of the integral identity of (3.19), together

with (9.6), give

JQ A 13(y) 9y (X,ptm,q)} £.(¥) R(Ap,z) f(X) &

9.9)

= JQ IME L M K, ptm, @) ME (NI R(A,,2) £(X) X

= IQ j(y) ¢y X,ptm,q) A{En(y) R(Ap,Z) £(X) }dx
because En+1(y) = 1 on supp En and J(y) = 1 on supp j. Also, Leibniz's
rule for distribution derivatives implies
= ' "
(9.10) A{&jnR(Ap,z)f} £, 0 R(Ap,z)f + 267 DyR(Ap,z)f + gnR(AP,z)f.

Combining this and the differential equation AR(Ap,z)f = —ApR(Ap,z)f

= -f - 2 R(Ap,z)f gives
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(t+w? (ptm, @) (€, RGAL2IED = -6 f + WP-2)E R(A,,2)E
(9.11)

+ 28! . + £'" R(A_,2z)f
25n DyR(AP z2)f &n (Ap z)

Combining (9.3), (9.9) and (9.11) gives

E(P""maQaZ) = (Jf)3 (P‘Hﬂ,Q) - J ¢o(xyp+m’Q) En(Y)J(Y)f(X)dX
supp f

(9.12)

+ (w¥(ptm,q)-2z) jQ ¢ (X,ptm, q) En(y)j(y)R(AP,z)f(X)dX

+ 2 J ¢ (X,ptm,q) E;(y> jy) DyR(Ap,z)f(X)dX
Q
+ JQ ¢, (X,ptm, q) E;(y) iy R(Ap,z)f(X)dX

Now €n(y) = 1 on supp f and hence the first two terms of the right-hand
side of (9.12) cancel for n > n, = nyg(f). 1In view of the definition
(3.28), (3.31) of the unitary spectral mapping &, > associated with

A D’ equation (9.12) implies that for all m > n, one has
0y

fpm,q,2) = @HpHm,Q) - 2) {0 (£ TR(A,,2)D} ()
(9.13) }
+240, (€110 RG DD |

+ {0, (ERIRMLDOL (). :

N R(A , ,
ow J R( p,z)f € Lp(B,) and J Dy R(Ap z)f because R(Ap z)f e D(Ap)

C L;(Q). Moreover, 0 < &n(y) <1, En(y) + 1l when n +~ » for all y > 0 -
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and supp &; U supp &; cly|n <y <n+1l}. It follows by Lebesgue's
dominated convergence theorem that En J R(Ap,z)f *J R(Ap,z)f,
Eé J Dy R(Ap,z)f -+ 0 and 63 J R(Ap,z)f + 0 in L,(B,) when n + «. Hence

passage to the limit n =+ ® in (9.13) gives

(9.14) fptm,q,2) = WH(pm,@) - 2) {8, (J R(A,,2)D} (@)

which is equivalent to (5.26).

Proof of Lemma 5.3. This result follows from the continuity of

£(p+m,q,A%10) for q >0, A €€ [p?,») - Tp and 0 > 0. The details of the
proof are precisely the same as in [34, Lemma 6.6] and are therefore not

repeated here.

Proof of Lemma 5.4. The starting point for the proof of (5.34)

is equation (9.1) with z = A + {0, A€ I C [pz,w) - Tp and 0 <0 < 0q,.

(9.1) can be written

(9.15) E(P‘*‘m,q,Z) = (J f); (P‘*‘m:Q) + S(P‘*‘m,Qaz)

where

(9.16) e(pm,q,z) = J MK, pra,4) R(A),2) £(X) dX.
,r

Note that (see (5.9))

(9.17) M(X,ptm,q) = 2 DY {j'(}') b (X,P”‘m’Q)} - 3"y ¢o(xtp+m’Q)

and hence

(9.18) g(ptm,q,z) = g, (ptm,q,z) + g, (ptm,q,2)
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where

(9.19) SI(P‘*‘m,q,Z) = ‘[ %(X,P“'N,Q) j"(Y) R(Ap9z) f(X) d&X

,T

and

(9.20) g,(p+m,q,z) = 2 [ Dy {1'(y) ¢p(X,ptm,q)} R(AP’Z) £(X) & .

,T

In the last integral note that R(Ap,z)f is in L:’zoc([h,«o,Lz(-ﬂ,ﬂ))

(cf. Lemma 4.1) while j'(y) ¢4(X,p*m,q) € Cy([h,=),L, (-m,m) and j(r) = 0.

It follows that

(9.21) g2(ptm,q,2) = -2 I ¢, (X,ptm,q) 3'(y) Dy R(Ap,Z) £(X) &X .

s T

Note that (9.19) and (9.21) extend by continuity to z = )\ + ig, with
A€ I and 0 <0 <0y, by Theorem 4.15.

Equations (9.15) and (9.18) imply that

(9.22)  |E(pm,q,2)|? < 4T D] (pm,0) |2+ |2, (p+m,q,2) |2+ |8, (pHm,q,2) | 2).

Moreover, Parseval's relation(3.29) for A° p implies

0
(9.23) J (I £); (ptm,q)|% dq = 1J fI? < Ufn?
HEZZ 1] l 0 4 I 4 Lz (Bo) = Lz (QO ,k)
where supp £ C Qo K Hence to prove Lemma 5.4 it will suffice to prove
9

(5.34) with f replaced by g, and g,. For g, equation (9.19), Parseval's

relation (3.29) and Corollary 4.17 imply
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0

12 = ” 2
ZZ J’O Igl(pmaq’z), dq "j R(AP’Z)fILz(Bo)
(9.24)

A

Max [3"(n 32 IR(Ap,z)fliz(Qo, )

r

A

Max |3 () )2 ¢ Iflizmo’k)
for all z = A * i0 with A € I and o € [0,0,] where C = C(I,p,0,,k,r)
= C(1,p,04,f) is the constant of Corollary 4.17. The proof of Lemma 5.4
may be completed by noting that the integral (9.21) for g, has the same
form as (9.19) but with j" R(Ap,z)f replaced by 2 j' Dy R(Ap,z)f. An
estimate for g, of the same form as (9.24) follows because the Lz(go,r) norm
of Dy R(Ap,z)f is majorized by the Lé(A,Qo’r) norm of R(Ap,z)f.

Proofs of Theorems 5.5, 5.6 and 5.7. These results all follow

from (5.35) by the spectral theorem and standard Hilbert space methods
and therefore will not be given here. A detailed development of these
arguments in the case of exterior domains may be found in [34, pp. 109ff].

Proof of Theorem 5.8. Only the orthogonality relation (5.45)

need be proved. The proof presented here is based on a method introduced
in [34] for the case of exterior domains. The proof for the case of
grating domains differs in some important technical details from that of
(34] and is therefore presented in full here.

The isometry &, p is known to satisfy (5.45) if and only if

(34, p. 116]

%
(9.25) NG, ) = {0} ;

i.e., the null space of ®: P contains only the zero vector. Equation
-9
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(5.45) will be proved by verifying (9.25). The following two lemmas are
needed.

Lemma 9.1. For all h = {h (q)} € I 9 L,(R;) one has

M
(9.26) ¢:’p h(X) = 1.im. ] J ¢, (X,ptm,q) h (q) dg
L E

where the convergence is in L, (%).
Lemma 9.2. Let h € N(@t p) and let ¥()) be a bounded Lebesgue
-3

measurable function on A > p?. Then
(9.27) h' = {¥(w* (prm, )by ()} € N, ).

Proofs of Lemmas 9.1 and 9.2. Lemma 9.1 is a direct consequence

of (5.38) and (5.42); see [34, Lemma 6.17]. To prove Lemma 9.2 let

f € L,(R) and note that the definitions of ¢+ and ¢: P and Theorem 5.7
= =9

imply

(£,0 , 0") = (8,  £,h")

(9.28)

) Jo B, (ptm,q) ¥(w? (ptm,q@)) h(a) dg
nEZ -

] Jo ¥ (0 (p+m,)) E,(ptm,Q) h_(q) dq
me

- ZZ fo @,  F@)H (@) h(a) dg
me

@, L FA)Eh) = (FANEQ, ) =0 .

-9

This proves (9.27) since f € L,(Q) is arbitrary.

R

NN . PRy, | T TV
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Choice of ¥(A). Let

(9.29) I = [a,b] C [p?,®) - T,
and define
(9.30) Y(A) = exp {-it AY/?} Xy, A > p?,

where t € R and xI(l) is the characteristic function of I. It will be
shown that Lemma 9.2 with this class of functions Y(\) implies (9.25).

The following notation will be used.
(9.31) N = {n : w?(ptm,q) € I for some q > O} .

Note that N is a finite set. Moreover, q -+ mz(p+m,q) is monotone for

q € R, and hence for each m € N

(9.32) A= w(ptm,q) €E I == q = /A - (p-f—m)fexm CR, -E

P m,p

’ ’

where L . is a compact interval and Em p is defined by (5.15). With

this choice of ¥, Lemmas 9.1 and 9.2 imply that if h € N(¢f p) then
-9

o p ' = ] | ¢, (X,p+m,q) ¥(w?(p+m,q)) h (q)dq
- nEZ 0 =
(9.33)

) -it ,
=] I ¢, (X,ptm,q) e w(ptm,q) h (q)dq = 0
Im,P
in L, (). The left hand side of (9.33) defines a solution of the
d'Alembert equation in Q. Its behavior for t + 7= will be determined
and shown to imply (9.25). For this purpose one needs the

Far-Field Form of ¢+(X,ptm,q). This phrase means the form of

¢z(x,y,p+m,q) for large y; i.e., far from the grating. To derive it note
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that (5.14) and Lemma 4.1 imply that

+ 2

2
in Lz’zoc(ﬂh). Moreover, for y > r

(9.35) ¢;Q(y,pﬂn,q) = ai(p*-m.q) exp {iy wwz(wz(rrhn,q) + i0)} .

It follows that for q € Im p

?

and X €
r

¢, (X,ptm,q) = ¢ (X,p+m,q)

(9.36)
+ 7 ai(p‘l'm,q) exp {ixp, t 1y qp} + p, (X,ptm,q)
2EL -
where
(9.37) L = L(p,I) = {2 : |pH2| < w(ptm,q)},
and
(9.38) (Pgrag) = (P, (WP (pHm,q) ~ (pHL)2)Y2)
while
(9.39) p,(X,ptm,q) = } 01,74, @) exp {i(p+)x}
- el ~
where
(9.40) L' = L'(p,I) = {& : |p+2]| > w(ptm,q)} .

I
o

oot

.y

_ L
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It is important to note that for q € I P the sets L and L' are inde-
»

pendent of q and depend on p and I only. An estimate for the term p,

in (9.36) is given by

Lemma 9.3. There exists a constant W = u(p,I) > 0 and for each

' > r a constant C = C(I,p,m,r,r') such that

(9.41) lo, &, ptm,q)| < ce™ forx€Q,, g€ I .

Proof of Lemma 9.3. For brevity write u(X) = ¢;(x,p+m,q) and

note that u € Fb,c,r with T = wz(p+m,q) * i0 e M; - Zp. In particular
by Lemma 4.1
(9.42) w@® = J u () exp {1(p+0Ix} 1n 1372°°(Q)
£z
and
(9.43) up(y) = uy(y") exp {~(y-y") ((p+D)? - w? (pm,q)) 2}

for all y,y' > r and all £ € L'. Now by a Sobolev inequality [1, p. 32]

there exists a C; = C,(h,r) such that

r r
(9.44) lug () |* < ¢} U lug(y)|? dy + J lug (1) |2 dY}
“h h
Moreover,
(9.45) tuCe, 12 =2 2,
u y L2 (-m,m) 4 ,QEZZ |u£(y)|

. 2 - 1
(9-46) 'Dy u( ,Y)ILz(_ﬂ’") yay QEZZ lul()')lz [}
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which, with (9.44), imply

-1
lup (2|2 < c2(2m) ao, un;’r +lul? )

h,r
(9.47)
-1 2 .
< c°2(21r) ot oy, 3
1
i.e., ;
(9.48) |o3g (e ptm,0) [2 < Cham™ 101 Cphm,i] i

Now the right hand side of (9.48) is a continuous function of q € Ry - E p i
’

by Theorem 5.1. Thus there exists a constant C;, = C,(I,p,m,r) such that

(9.49) l¢él(r,p+m,q)| $C, for all q €L

’

Next, recalling (9.29), define

(9.50) M= u(p,I) = Min {(p+R)? - b2}1/2

%L’
so that for all q € Im p and 2 € L'(p,I) one has ,
(9.51) {(p+2)? - w2 (ptm,q) 12 > {(p+2)2 - b2}V2 > >0 . . 5

LTy

Then for r' > r and X € Qr" q€ Im p one has the estimates

lp, (X,p+m, q) |
(9.52)

1A

I 16}, (y.ptm,0) =
QEL'

A

QEZ [610 (roptm, )| exp {=(y-1) ((p+2)2-(w? (pHm,q)) 2}
L' -

- -

<¢, [ exp {-(y-r) {(p+2)? - b2}¥2}
£’

o o
prommagt ____ beyranget

A

(c, ug exp {-(r'-r) {(p+2)? = b2}V2}) exp {-u(y-r")}
; Ll
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which implies (9.41).

Proof of Theorem 5.8 (continued). Substitution of the far~field

form (9.36) for ¢: in the identity (9.33) gives the identity

(9.53) up(£,X) + u, (£,X) + uy(t,X) = 0 in L, ()

for all t € R where

(9.54) ue(e,%) = J f 8y (X,ptm,q) e TP 4 (g)4q
I

meEN
m,p

(9.55) u,(e,X)= [ I ( ) az(p+m,q)ei(XP21YQQ)]e-itm(p+m,Q) h_(a)dq
I

2L

(9.56) (6% = ] J b, (X,phm,q) e TP 4 (g)4q
mEN ‘I

m,p

Note that u,(t,X) has an extension to X € B, such that (see (3.32),

(3.33))
(9.57) Uy (t,*) = exp {-it A2} ny
f where
*
-] .
. (9.58) hi = oo’p {Xm,p h :m€ z} € L, (B,)

and Xm p is the characteristic function of Im p* In particular, one has
k4 ’

| (9.59) P (6,07 g y = IBGIE (g ) = mgN JI Ihy(@)|? dq
: m,p

The proof of Theorem 5.8 will be completed by showing that

(9.60) ti:w Pag (6,01 5 =

0.
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It follows from (9.59), (9.60) that hm(q) = 0 for almost all q € Im’p.
But A = wz(p+m,q) maps R, - Em,p bijectively onto [pz,m) - TP (see
(5.15)). Thus given any m € Z and any interval Im,p C Ry - Em,p there is
an interval I C [p?,®) - Tp such that the above relatioms hold. Thus
hm(q) Z 0 in Ry - Em,p for every m € Z, whence h = 0 in £ & L;(R,)

which prove (9.25).

Proof of (9.60). C-nsider first the function u,(t,X) defined by

(9.55). It can be written

(9.61) u(e,X) = J u (£,%)
mEN
where
(9.62) u, (6K = F o (e,y) exp {1(pH)x}
’ €erL
and
\ (9.63) ul,m,Z(t’y) = II a;(p+m,q) etinz'itw(P+m,Q)hm(q)dq .
m,p

N In the last integral

ap = {0 (ptm, @) - (p+e)2}2 ]
3 (9.64) '

2 = {q® + (ptm)? - (p+2)2}¥% = Q(q,p+m,p+L) .

Make the change of variable

(9.65) q' = qy = Q(q,p+m,p+L)
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in (9.63). Since

(9.66) w?(ptm,q) = w?(p+e,q")

one has

(9.67) q = Q(q',p+l,ptm)

and

(9.68) ux,m,l(t’y)

Now each of these integrals has the form of a modal wave in a simple

waveguide [35, §5].

(9.69)

+ tiyq'- +2,q"'

= J a; (ptm,q) e tya'-itu(ptl,q’)
Il

m,%,p

Moreover, it was shown in [35] that

lim ju
t+mo 17

eyl =0,
m, ¢ L, (Ry)

Thus it follows from (9.69)

(9.70) fu,

(9.71) bu,

and

(9.72)

that

(9.73)

,m(t’.’y)niz(’ﬂ,n) =2 QEZL Iul,m,l(t’y)lz

. 2 = ¢ 2
,m(t) )uLz(Bo) 2n .QEZL Iul,m,l(t’ )le(RO)

buy (€200 (5 < méN bur (& (8,)

lim Ju, (t,*)d

toF @

=0 .
L, (B,)

29 '
hm(Q) 3q" dq
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It will be shown next that the function u,(t,X) defined by

(9.56) satisfies

(9.74) lim  fu,(t, )1
>

L@ =0

This is a consequence of the following two lemmas.
Lemma 9.4. The function u(t,X) = u,(t,X) defined by (9.56) has

the properties

(9.75) u(t,*) € L,(Q) for all t € R,

(9.76) lim !Iu(t,')llo K= 0 for ail k > r,
t>rto ’

and there exists a W4 > 0 and for each r' > h a constant C = C(xr') such

that
(9.77) luCe, )] <ce™ for all x € Q. and t € R.

Lemma 9.5. If u(t,X) is any function having properties (9.75),

(9.76), (9.77) then

(9.78) lim  fu(t, )1

>t

L@ =0

Proof of Lemma 9.4. To verify (9.75) note that by (9.53),

u(t,*) = uy(t,*) = ~u,(e,*) - uy(t,*) in L,(Q). But uy(t,*) € L,(B)) by
the spectral theory of Ao,p (83 above) and u, (t,*) € L,([-m,m] x R) by
the theory of waveguides as developed in {35]. Thus the restrictions of
these functions to { are in L, ().

The decomposition u = u, = -u, - u, also implies (9.76) because

u, and u, both represent waves in simple waveguides which have this local

decay property; see [35].




Property (9.77) is a consequence of the definition of u,,

equation (9.56), and Lemma 9.3. Indeed, combining (9.41) and (9.56) gives

(9.77) with v = u(p,I) defined by (9.50) and

(9.79) ¢ = Cc(I,p,m,r,r") [ J [h (@) | dq .
I

mEeN
m, p

Proof of Lemma 9.5. Conditions (9.75) and (9.77) imply that one

has for each r' > h and k > ',

Pue, )P gy = lu(e, )17 |+ Tule, )]

(9.80)

© (T
“u(t,')"i t f J lu(t,x,y)|? dxdy
’ k ‘~m

1A

o T
Hu(t,')ﬂ§ Wt c? j J e™? M 4xdy
3 k _Tr

k

+ (7 c¥/u) &M

o2
lu(t, )"o,k

where C = C(r') is independent of k. Making t = *= in (9.80) with k

fixed gives, by (9.76),

(9.81) lim sup fu(t,*)l?2 (n C2/u) e 2HK

gt L2 )

tA

for all k > r'. This implies (9.78) since the left hand side of (9.81)

is independent of k.

Proof of Theorem 5.8 (concluded). The proof may be concluded by

verifying (9.60). Now the identity (9.53) implies
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IA

nuO(t,.)uLz(Bo)
(9.82)

Iluo(t,‘)lle (BO_Q) + "uo(t:')“Lz(Q)

1A

““O(t")"Lz(Bo-Q) + llul(t,-)an(Bo) + !luz(t,o)ILz(Q)'

Moreover, B, - {2 is bounded and hence ugy(t,*) + 0 in LZ(B0 - Q) by the

0

local decay property for A° P’ The remaining terms on the right hand

’

side of (9.82) tend to zero when t - ¥« by (9.73) and (9.74).

L e A P T e S M e Y R, A U T
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§10. Proofs of the Results of §6.

Proof of Theorem 6.1. It will be shown that if ¢i(x,p+m,q) are
the generalized eigenfunctions for Ap whose existence is guaranteed by
Theorem 5.1 then the functions wt(x,p,q) defined by (6.5) have properties
(6.1), (6.2), (6.3). This will prove the existence statement of Theorem

6.1. Note that q € Em . <= (p,q) € E (see (2.30) and (5.15)). Hence

the construction (6.5) is valid for (p,q) € Rﬁ - E.
The sets D(Aloc) are characterized in the cases of the Neumann

and Dirichlet boundary conditions by (see (1.26), (1.28))

N,%0c

(10.1) D" ™)) = 117%°%(4,6) N {u: (1.14) holds for v & L)'*°%(@)},

(10.2) p(aP

L 1,8
2oci6)y = 1y°29%s,6) n 12740%(g)
As a first step it will be verified that (6.5) defines a function

1
¥, (+,p,q) € Ly*%0C

2
¥, (*,p,2) € L,°°

(A,G) for each (p,q) € R§ - E. 1t is clear that

(G) c D'(G) for (p,q) € R% - E because ¢i(',po+m,q)

e LEOC(Q) for p, € (-1/2,1/2], m€ Z and q € R, - Em,p. It remains to
show that Vwi(-,p,q) and Awi(‘,P,Q), as elements of D'(G), are also in
L%oc(G). Now by definition ¢t(-,p+m,q) € L;’ROC(A,Q) and hence (6.5)

implies

(10.3) Y, (*,p,q) € L;’loc [A, U 9(2)]
* 9€Z

Hence, it is only necessary to verify that v, (*,p,q), VY, and Ay, are
locally square integrable near the lines {(28+1)T X y : £ € Z} (see (3.4)).

Moreover, w:((2£+1)" *+ 0,y,p,q) and Dlwt((22+l)n + 0,y,p,q) exist in
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L%oc(Y) (see the discussion preceding (3.7)) and the p-periodic boundary

condition for ¢t and (6.5) imply

WI((22+1)"+0,',P,Q) = wi((22+l)ﬂ-0,',P,Q)

(10.4)

D;Wt((21+l)ﬂ+0,'.P,q) = Dlwt((21+l)ﬂ-0,',P,Q) .

The proof that y (+,p,q) € L;‘QOC(A,G) will be completed by proving

Lemma 10.1. The distribution derivatives Djw+(°,p,q) are given by

(10.5) Dy¥,(x,y,p,q) = exp {2milp,} Do, (x-2mL,y,potm, ), (x,¥) € o),

for § = 1,2. Moreover, Y, (*,p,q) satisfies (6.2) as a distribution on G.

Proof of Lemma 10.1. (10.5) will be proved for j = 1. Thus it

will be shown that for all 8 € C?(G) one has

(10.6) J Y, D,6 d&X = -f Dy, 6 &X

G ~ G -
where D, ¢, € L%oc(G) is defined by (20.5). This will be verified for
functions 8 with supp 6 C Q(o) v Q(l) U (r x y). In this case (10.6) is

a consequence of (10.4) and the equations

(10.7) fg(o) Y, D8 dX = —fn(” Dy, 8 dX + JY ¥, (1-0,y,p,q) dy

(10.8) IQ(I) wt Dle dX = -JQ(I) Dlwi 8 dX - JY wt(n+0,y,p,q) dy .

Aqw e

Equation (10.7) may be verified by calculating

PR




(10.9) fg(o) ¥, D, (¢40) dX ,

where ¢6(x) = ¢((x-m)/8), ¢6(x) £ 1 for x < m-§, ¢6(x) 0 for x > 7 and
0< ¢5(x) < 1, and then making § - 0. The technique is explained in
[35, p. 57ff]. The case of a general 8 € C?(G) may be proved in the

same way. The proof of (10.5) for j = 2 is similar. Moreover, an

analogous calculation, based on (10.4), gives
(10.10) Awt(x,y,p,q) = exp {Zﬂilpo} A¢t(x—2n2,y,po+m,q), (x,y) € 9(2),

and it follows from (5.2) that Y, satisfies (6.2).

Proof of Theorem 6.1 (continued). To complete the proof that

wt(‘,p,q) € D(Aloc) in the Neumann case, condition (1.14) must be proved

1
for veL ’com(G). Now for such a v one has, by Lemma 10.1,

Ay, v &X = j Ay, v dX
Ic * zéz o) =

(10.11)
) J AY, (x+21L,¥,p,q) v (x+2mh,y) dX
ez ‘Q -
=7 J Ap, (x,¥,P,q) 2t 7 (x+2m2,y) dX
ez ‘Q -
-I A, u dX
q 't
where
(10.12) u(x,y) = Z e—ZniQp v(x+2ml,y) € L:,p,com(n) .

S/
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Note that the sums in (10.11), (10.12) are finite because v € L;’com(G).

A similar calculation gives

(10.13) J vy, * dex-J Ad, * Vu &
¢ Q -

and adding (10.11), (10.13) gives

(10.14) j {8y, v+ W, - W} d&X -[ {A¢, u+ Vg, » Vu} dX = 0
¢ - - Q@ - =

N, foc

because ¢, € D(AV'Y°C(D) and u € L,°P*°7R(@) (see (3.19)).

To complete the proof that ¥ _(*,p,q) € D(Aloc) in the Dirichlet

D,%0c

case, it must be shown that V,(*,p,q) € 1, (G) = Closure of C:(G) in

1
Lz’loc(G). This follows immediately from (6.5) because Y, (*,p,q) is

p-periodic and ¢,(*,ptm,q) € LE,P»QOC

() = Closure of C:(Q) in L:’zoc(ﬂ).
To see this note that on any set KN G where K is compact in R? the
functions 6 € C:(G) coincide with functions 8' = ¢80 where ¢ € C:(Rz) and
$(X) =1 on K.

It has been shown that wi(-,p,q), defined for all (p,q) € Rg -E
by (6.4), satisfies (6.1) and (6.2). Condition (6.3) is also immediate

because y, and ¢, satisfy Y, (X,p,q) = gPe by (X,potm,q) (see (3.27)) and

hence
(10.15) 01(X,p,q) = 00 ) (X,pgtm,q) .

It followsnhattki(resp., ¢') is anoutgoing (resp.,incoming) R-B wave for G.

The uniqueness of Y (+,p,q) was proved in §6. To complete the

proof of Theorem 6.1 the continuity of (p,q) = y,(*,p,q) € L;’zoc(A,G)
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for (p,q) € R: - E-must be shown. Note that since Y, satisfies (6.2) it
will be enough to prove the continuity of the mapping (p,q) - wt(-,p,q)
€ L;’QOC(G). Thus it must be shown that for each compact K C R? and each

(Pg»q,) € R% - E one has

lwt("p’q) = wi("po ,qo)le(m) -0
(10.16)

10, (+52,0) = W, (55300 (gng) * O

when (p,q) * (py»qy). For the functions wo(-,p,q) the continuity condi-
tions (10.16) follow from (1.33), (1.34) by direct calculation. For

w;(°,p,q) they follow from (6.5) and the continuity of (p,q) - ¢;(~,p,q)
1 2oc(Q)

€ Lz’ : i.e.,

16,0522 = 01(*Rga90) 1y (g * ©
(10.17)

1Ve (+5p,q) - v¢£("p°’q°)'Lz(W) " e

when (p,q) * (p,,q,). (10.17) is a consequence of Theorem 4.15 and the
definitions (5.13) and (5.14). (10.17) and (6.5) imply (10.16) because
KN G is contained in a finite union of the sets KN Q(z).

Proof of Theorem 6.2. This was given in §6.

Proof of Corollary 6.3. As remarked in §6, these results follow

from Theorem 6.2 and the fact that Lgom

(G) is dense in L,(G). The details
may be found in (34, p. 109] where the corresponding results are proved

for exterior domains.

Proof of Theorem 6.4. The proof outlined in §6 will be completed

here. The two boundary conditions will be discussed separately.
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The Dirichlet Case. Proceeding as in §6, let f € Lgom(G) and
define
(10.18) u = R(AD(6),2) £
and
(10.19) VM(X) = ¢M(X) u(X) , xe G,

H

where ¢M(X) = W(IXI -M € C%(Rz) satisfies ¢M(X) 1 on GM and

supp qn C GM+1' Then it is easy to verify that € D(AD(G)) and

™

(AP(6)-2) vy (X) = =(&+2) ¢ (X) u(X)
(10.20)

= ¢M(X) £(X) - 2Vu- V¢M -u A¢M

= £(X) + gy(X) for M > M (f) ,

where gy 1s defined by (6.21), because ¢M(X)
Equation (10.20) implies (6.20). To verify (6.22) note that by

(6.2) one has

Vs (Pra) = Ic ¥, (X,p5q) v (X) dX

(10.21)

= w7 (p,q) f A Y, (X,p,q) v (X) dX .
R

1
Now Y, (-,p,q) € 1, toe

(A,G) and hence

1 on supp £ for M > M, (f).
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(10.22) f {aw,) vy + W, * Wyl dx = 0
c + +

because vy € LE(G) and supp Yy is compact. Indeed, vy = lim ¢n in
L3(G) where ¢_ € C,(G) and (10.22) holds with vy replaced by ¢_ by the

distribution definitions of 4y, and Vy,. Similarly, one has

(10.23) j {0, (8 v) + W, Vvy} dX = 0
o % +

because Yy € D(AD(G)), SUpPP Vy is compact and wt € Lg,loc(c). Combining

(10.21), (10.22) and (10.23) gives
(10.24) GMi(p,q) = w2 (p,q) J b, (X,p,q) Avy(X) dX .
c %

Finally, combining (20.20) and (10.24) gives

e (20 = 70 (2, @) (W, (+,P,0) ,4v,)
= 0 (R, (0, (1P, 0)  Evgytavy)

= w7 (p,q) (£, (p,a) + 8, (p,0) + 20y, (P,q))

Solving this equation for ¥, gives (6.22) and hence (6.23).

M+
To find the limiting form of (6.23) for M + « note that

|¢M(x)| <1 and ¢M(x) + 1 for all X &€ G when M - », Moreover,

(10.26) ;f: 8y = 0 in L, (G)
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because in the definition (6.21) Vu and u are in L, (G), |V¢M(I)| and
A¢hﬁx) are bounded uniformly for all M and supp 8y c GM+1 - GM‘ Hence
passage to the limit M + ® in (6.23) gives (6.18) for f € Lgom(G). The

general case follows by a density argument.

The Neumann Case. The method presented above can be used.

However, the definition of the multiplier ¢M must be modified to emnsure
that iy € D(AN(G)). If ¢M € Cg(a) then it is easy to show that

vy € L;(A,G). The hypothesis G € S of §1 will be used to comstruct a
function ¢M € Cg(a) such that Vy = ¢Mu also satisfies the Neumann

boundary condition. The construction is similar to the one used above

to prove Theorem 4.6 in the Neumann case.

To construct ¢ﬁ let o(x,y), T(x,y) be the tangent-normal
coordinates defined in the neighborhoods 0 + (2mm,0) of the points
((2m-1)7,y,) as in §8 following (8.177). Define £, by (8.178) as before

and let n,,n, € C2(R) satisfy 0 < nj(a) < 1 and

1 for a < -Gj
(10.27) ny(a) =
0 for a > Gj |
where Gj > 0. Define ‘
1
(10.28) By) = 110 £,(D) + ny(x - (DML = £,(D] |

for all (x,y) € G n {(x,y) : x > 0}. Note that if 0 < § < 7 then for

$s 62, §, small enough one has

1 for x

IA

(M) - 6§, ;,}
(10.29) Q&(x’y) - N
0 for x > (L)W + § . S




Extend ¢é to the rest of G by

(10.30) ¢§(x,y) =] - q;(-x,y) for (x,y) € 6 N {(x,y) : x <0} .

Finally let ¢§(y) € C3(R) satisfy 0 < ¢§(y) <1, ¢§(y) =1 fory <M,

¢§(Y) 20 for y >M+ 1 and define

(10.31) f(x,7) = dy(x,y) $f(¥) .
Then ¢M has the desired properties. It is clear that ¢M € C%(E) and
(10.32) supp ¢ C {(x,y): -(261)71 - § <x < (MT+S,0 <y <M+ 1} .

Moreover, in the strip Ix - (M + 1)v| <6, 0 <y <h, one has EZ(T) =1

and hence ¢M(x,y) = n,(0(x,y)). Similarly, in lx + (M + l)ﬂl <3,

0 €<y € h one has ¢M(x,y) =1 -n,(0(x,y)). This property implies that
vy = ¢Mu satisfies the Neumann boundary condition on I'; see (8.184).
The remainder of the proof of Theorem 6.4 is the same as in the

Dirichlet case.

Proof of Theorem 6.5. It was remarked in §6 that (6.24) and

(6.26) are direct consequences of (6.27) (see [34, p. 110]). Relation
(6.27) will be derived from Theorem 6.4 and Stone's formula. The latter

states that if I = [a,b] C R then for all f € L,(G) one has

(10.33) %(f,[ﬂ(b)+-ﬂ(b-)-H(a)-H(a-)]f) = lim %-I IR(A,M+i0)£12 dX .
o0+ I

Now Theorem 6.4 and Fubini's theorem imply that




g 2 - g [fﬁ (pJQ) [2
T fI IR(A,A"‘iO)fl di s II J'RZ ‘[wz (p,q)—)\-iOIT dp dq da
0

(10.34)

g dA ~ )

Moreover, if

dA
I (A-w®(p,q))%+0?

(10.35) K(o,p,q) = % j

then 0 < K(0,p,q) <1 for all (p,q) € Rg and ¢ > 0 and 1lim K(o,p,q)

= xI(wz(p,q)) for ¢ + 0; [34, p. 98]. Hence (10.33) and (10.34) imply

(10.36) 3 (£, [I{b) + N(b-) -n<a)-n(a—)1f)=f L X1 @ @.aN £, (pa) ]2 dp dq '
. :
0

by Lebesgue's dominated convergence theorem. On making a + b in (10.36)

and using the relation I((b-)-) = N(b-) one finds that II(b) = N(b-) for

e et

all b € R. Then putting [(b~) = II(b), M(a-) = Nl(a) in (10.36) gives
(6.27).

Proof of Theorem 6.6. This result can be proved by the method

used for the case of exterior domains in [34, p. 113]. The multiplier ‘P

¢m of [34, p. 114] may be replaced by the function ¢M used to prove

Theorem 6.4. The remaining details are the same as in [34] and will not

be repeated here. !

Proof of Theorem 6.7. It will suffice to prove the relation

(6.32), or equivalently 3
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(10.37) u¢§fn =Ifl ,

for all f € Cy(RZ - E).

As a first step, note that for all f(p,q) € L2(R§) one has

(10.38) (¢§f)(X) = L2(G)-lim J Y. (X,p,q) f(p,q) dp dq .
Mo D
M

The simple proof is the same as for the case of exterior domains [34,

p. 117]. 1If f € C?(Rg - E) then (10.38) can be written

(036) (x) = J , Vs(X,2,0) £(p,q) dp dg

Ry
(10.39)

) J ¥, (X,p+m,q) f(ptm,q) dp dq
w€Z ‘B,

and only a finite number of terms in the sum are non-zero. In particular,
tne definition (6.5) of Y, implies that
(10.40) @6 = | j *THP ¢, (x-21L,y,ptm,q) £(ptm) dp dq
- mEZ ‘B, -
for X € Q(l).

Next note that

u¢§f|2 - jc |3£(x)|? ax = méz jg(l) |¢; £(X)]? ax

(10.41)

= ¥ f |¢:f(x+2v2,y)|2 dx dy .
Q

ez
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Now (10.40) implies that for (x,y) €

1/2 o
(3% £) (x+21L,y) = ) J [J eZWigp ¢,(x,y,ptm,q) f(p+m,q)dq]dp
- sz ‘-1/2 VO -

(10.42)

12
- J TN

{£(p++, ) (X) dp
-1/2 P

by Lemma 9.1. The interchange of summation and integration is elementary
because the sum is finite for f € C?(Rﬁ - E). Equation (10.42) states

that the left hand side of the equation, as a function of £ € Z, is the

set of Fourier coefficients of the function of p defined by ¢;,p {f(pt+e,*)}.

Thus Parseval's relation for Fourier series implies

1/2

(10.43) To|o¥ f(x+2me,y)|? = J (@)  {£(p+,OH |2 dp
ez " -1/2 P

Integrating (10.43) over X € { and using (10.41) gives, again by

Fubini's theorem,

1/2 .
197 £12 = j j (@, _ {£{p++, ")) (X)]? dX dp
* -1/2 /g P

(10.44)

JI/Z * )
= 19, {f(p+-,)h? dp .
-1/2 %P

Now the orthogonality property for @t D’ Theorem 5.8, implies that
-1

19, (£, )12 = B {E(p+e, ) 02
(10.45)

aQ

) J | £(p+m,q) |2 dq .
mez /0

e R i Y 1A Y R RO e B T YL ST




Combining (10.44) and (10.45) gives

(10.46) 1o} £12 = § 1f12

L L, @) T

£12 2
L, (R))

which is equivalent to (10.37).
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